IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3147-d516122.html
   My bibliography  Save this article

Effects of the Climate Change on Peripheral Populations of Hydrophytes: A Sensitivity Analysis for European Plant Species Based on Climate Preferences

Author

Listed:
  • Ricardo Enrique Hernández-Lambraño

    (Grupo de Investigación en Biodiversidad, Diversidad humana y Biología de la Conservación, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain
    Departamento de Botánica y Fisiología Vegetal, Área de Botánica, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain)

  • David Rodríguez de la Cruz

    (Grupo de Investigación en Biodiversidad, Diversidad humana y Biología de la Conservación, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain
    Departamento de Botánica y Fisiología Vegetal, Área de Botánica, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain)

  • José Ángel Sánchez Agudo

    (Grupo de Investigación en Biodiversidad, Diversidad humana y Biología de la Conservación, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain
    Departamento de Botánica y Fisiología Vegetal, Área de Botánica, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, E-37007 Salamanca, Spain)

Abstract

Biogeographical theory suggests that widespread retractions of species’ rear edges are expected due to anthropogenic climate change, affecting in a particularly intense way those linked to fragile habitats, such as species’ rear edges closely dependent on specific water conditions. In this way, this paper studies the potential effects of anthropogenic climate change on distribution patterns of threatened rear edge populations of five European hydrophyte plants distributed in the Iberian Peninsula. We explored (i) whether these populations occur at the limit of the species’ climatic tolerance, (ii) we quantified their geographic patterns of vulnerability to climate change, and in addition, (iii) we identified in a spatially explicit way whether these threatened populations occur in vulnerable environments to climate change. To do this, we simulated the climatic niche of five hydrophyte species using an ecological modelling approach based on occurrences and a set of readily available climatic data. Our results show that the Iberian populations studied tended to occur in less suitable environments relative to each of the species’ optimal climates. This result suggests a plausible explanation for the current degree of stagnancy or regression experienced by these populations which showed high sensitivity and thus vulnerability to thermal extremes and high seasonality of wet and temperature. Climatic predictions for 2050 displayed that most of the examined populations will tend to occur in situations of environmental risk in the Iberian Peninsula. This result suggests that the actions aimed at the conservation of these populations should be prioritized in the geographic locations in which vulnerability is greatest.

Suggested Citation

  • Ricardo Enrique Hernández-Lambraño & David Rodríguez de la Cruz & José Ángel Sánchez Agudo, 2021. "Effects of the Climate Change on Peripheral Populations of Hydrophytes: A Sensitivity Analysis for European Plant Species Based on Climate Preferences," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3147-:d:516122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    3. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    3. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    4. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    5. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    6. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    7. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    8. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    9. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.
    10. Konstantinos Kougioumoutzis & Alexandros Papanikolaou & Ioannis P. Kokkoris & Arne Strid & Panayotis Dimopoulos & Maria Panitsa, 2022. "Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    11. Amintas Brandão Jr. & Lisa Rausch & América Paz Durán & Ciniro Costa Jr. & Seth A. Spawn & Holly K. Gibbs, 2020. "Estimating the Potential for Conservation and Farming in the Amazon and Cerrado under Four Policy Scenarios," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    12. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    13. Beaumont, Linda J. & Graham, Erin & Duursma, Daisy Englert & Wilson, Peter D. & Cabrelli, Abigail & Baumgartner, John B. & Hallgren, Willow & Esperón-Rodríguez, Manuel & Nipperess, David A. & Warren, , 2016. "Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?," Ecological Modelling, Elsevier, vol. 342(C), pages 135-146.
    14. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    15. Sébastien Bonthoux & Andrés Baselga & Gérard Balent, 2013. "Assessing Community-Level and Single-Species Models Predictions of Species Distributions and Assemblage Composition after 25 Years of Land Cover Change," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    16. Tews, Joerg & Ferguson, Michael A.D. & Fahrig, Lenore, 2007. "Potential net effects of climate change on High Arctic Peary caribou: Lessons from a spatially explicit simulation model," Ecological Modelling, Elsevier, vol. 207(2), pages 85-98.
    17. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    18. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    19. Gössling, Stefan & Peeters, Paul & Ceron, Jean-Paul & Dubois, Ghislain & Patterson, Trista & Richardson, Robert B., 2005. "The eco-efficiency of tourism," Ecological Economics, Elsevier, vol. 54(4), pages 417-434, September.
    20. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3147-:d:516122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.