IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0083684.html
   My bibliography  Save this article

Climatic Niche Evolution in New World Monkeys (Platyrrhini)

Author

Listed:
  • Andressa Duran
  • Andreas L S Meyer
  • Marcio R Pie

Abstract

Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.

Suggested Citation

  • Andressa Duran & Andreas L S Meyer & Marcio R Pie, 2013. "Climatic Niche Evolution in New World Monkeys (Platyrrhini)," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-6, December.
  • Handle: RePEc:plo:pone00:0083684
    DOI: 10.1371/journal.pone.0083684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0083684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0083684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pie, Marcio R. & Meyer, Andreas L.S. & Firkowski, Carina R. & Ribeiro, Luiz F. & Bornschein, Marcos R., 2013. "Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terrarana: Brachycephalidae) in the Brazilian Atlantic Rainforest," Ecological Modelling, Elsevier, vol. 250(C), pages 165-176.
    2. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    3. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brogan M. Stewart & Sarah E. Turner & H. Damon Matthews, 2020. "Climate change impacts on potential future ranges of non-human primate species," Climatic Change, Springer, vol. 162(4), pages 2301-2318, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciana L Porfirio & Rebecca M B Harris & Edward C Lefroy & Sonia Hugh & Susan F Gould & Greg Lee & Nathaniel L Bindoff & Brendan Mackey, 2014. "Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-21, November.
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    4. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    7. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    8. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    9. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    10. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    11. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    12. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    13. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    14. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    15. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    16. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    17. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    18. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    19. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    20. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0083684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.