IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2823-d511268.html
   My bibliography  Save this article

Energy Storage for Energy Security and Reliability through Renewable Energy Technologies: A New Paradigm for Energy Policies in Turkey and Pakistan

Author

Listed:
  • Riaz Uddin

    (Haptics, Human-Robotics and Condition Monitoring Lab (National Center of Robotics and Automation), Department of Electrical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Hashim Raza Khan

    (Neurocomputation Lab (National Centre of Artificial Intelligence-NCAI), Department of Electronic Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Asad Arfeen

    (Department of Computer and Information Systems Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Muhammad Ayaz Shirazi

    (Haptics, Human-Robotics and Condition Monitoring Lab (National Center of Robotics and Automation), Department of Electrical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan)

  • Athar Rashid

    (Department of Governance and Public Policy, National University of Modern Languages, Islamabad 44000, Pakistan)

  • Umar Shahbaz Khan

    (Department of Mechatronics Engineering, College of E&ME, National University of Sciences and Technology, Islamabad 46000, Pakistan)

Abstract

Forecasting the microeconomics of electricity will turn into a challenging process when electricity is produced through renewable energy technologies (RET). These technologies are mainly sunlight-based photovoltaic (PV), wind power, and tidal resources, which vigorously rely upon ecological conditions. For a reliable and livable energy supply to the electricity grid from renewable means, electrical energy storage technologies can play an important role while considering the weather effects in order to provide immaculate, safe, and continuous energy throughout the generation period. Energy storage technologies (ESTs) charge themselves during the low power demand period and discharge when the demand of electricity increases in such a way that they act as a catalyst to provide energy boost to the power grid. In this paper, we presented and discussed the renewable ESTs for each type with respect to their operational mechanism. In this regard, the renewable energy scenarios of Pakistan and Turkey are first discussed in detail by analyzing the actual potential of each renewable energy resource in both the countries. Then, policy for the EST utilization for both the countries is recommended in order to secure sustainable and reliable energy provision.

Suggested Citation

  • Riaz Uddin & Hashim Raza Khan & Asad Arfeen & Muhammad Ayaz Shirazi & Athar Rashid & Umar Shahbaz Khan, 2021. "Energy Storage for Energy Security and Reliability through Renewable Energy Technologies: A New Paradigm for Energy Policies in Turkey and Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2823-:d:511268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Dilaver, Zafer & Hunt, Lester C., 2011. "Industrial electricity demand for Turkey: A structural time series analysis," Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
    3. Sheikh, Munawar A., 2010. "Energy and renewable energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 354-363, January.
    4. Thilo Grau, 2014. "Comparison of Feed-in Tariffs and Tenders to Remunerate Solar Power Generation," Discussion Papers of DIW Berlin 1363, DIW Berlin, German Institute for Economic Research.
    5. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    6. Sarıca, Kemal & Or, Ilhan, 2007. "Efficiency assessment of Turkish power plants using data envelopment analysis," Energy, Elsevier, vol. 32(8), pages 1484-1499.
    7. Melikoglu, Mehmet, 2013. "Vision 2023: Feasibility analysis of Turkey's renewable energy projection," Renewable Energy, Elsevier, vol. 50(C), pages 570-575.
    8. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    9. Tükenmez, Mine & Demireli, Erhan, 2012. "Renewable energy policy in Turkey with the new legal regulations," Renewable Energy, Elsevier, vol. 39(1), pages 1-9.
    10. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    11. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    12. Spanos, Constantine & Turney, Damon E. & Fthenakis, Vasilis, 2015. "Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 478-494.
    13. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    14. Malhotra, Abhishek & Battke, Benedikt & Beuse, Martin & Stephan, Annegret & Schmidt, Tobias, 2016. "Use cases for stationary battery technologies: A review of the literature and existing projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 705-721.
    15. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    16. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    17. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    18. Krieger, Elena M. & Cannarella, John & Arnold, Craig B., 2013. "A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications," Energy, Elsevier, vol. 60(C), pages 492-500.
    19. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    3. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.
    4. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    5. Riaz Uddin & Abdurrahman Javid Shaikh & Hashim Raza Khan & Muhammad Ayaz Shirazi & Athar Rashid & Saad Ahmed Qazi, 2021. "Renewable Energy Perspectives of Pakistan and Turkey: Current Analysis and Policy Recommendations," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    6. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    8. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    9. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    10. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    12. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    13. H. Eduardo Ariza Chacón & Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant, 2018. "Modelling, Parameter Identification, and Experimental Validation of a Lead Acid Battery Bank Using Evolutionary Algorithms," Energies, MDPI, vol. 11(9), pages 1-14, September.
    14. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    15. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    16. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    17. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive Performance Assessment on Various Battery Energy Storage Systems," Energies, MDPI, vol. 11(10), pages 1-26, October.
    18. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
    19. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2823-:d:511268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.