IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2433-d504837.html
   My bibliography  Save this article

Application of Exact and Multi-Heuristic Approaches to a Sustainable Closed Loop Supply Chain Network Design

Author

Listed:
  • Abdul Salam Khan

    (NUST Business School (NBS), National University of Sciences and Technology (NUST), Islamabad 44100, Pakistan)

  • Qazi Salman Khalid

    (Department of Industrial Engineering, University of Engineering and Technology, Peshawar 25100, Pakistan)

  • Khawar Naeem

    (Department of Industrial Engineering, University of Engineering and Technology, Peshawar 25100, Pakistan)

  • Rafiq Ahmad

    (Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Razaullah Khan

    (Department of Mechanical Engineering Technology, University of Technology, Nowshera 24100, Pakistan)

  • Waqas Saleem

    (Department of Mechanical and Manufacturing Engineering, Institute of Technology, F91 YW50 Sligo, Ireland)

  • Catalin Iulian Pruncu

    (Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
    Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Closed-loop supply chains (CLSC) are gaining popularity due to their efficiency in addressing economic, environmental, and social concerns. An important point to ponder in the distribution of CLSC is that imperfect refrigeration and bad road conditions may result in product non-conformance during the transit and thus such products are to be returned to the supply node. This may hinder the level of customer satisfaction. This paper presents a sustainable closed-loop supply chain framework coupled with cross-docking subject to product non-conformance. A cost model is proposed to investigate the economic and environmental aspects of such systems. The transportation cost is analyzed in terms of total carbon emissions. A set of metaheuristics are administered to solve the model and a novel lower bound is proposed to relax the complexity of the proposed model. The results of different size problems are compared with the branch and bound approach and the proposed lower bound. The results indicate that the proposed research framework, mathematical model, and heuristic schemes can aid the decision-makers in a closed-loop supply chain context.

Suggested Citation

  • Abdul Salam Khan & Qazi Salman Khalid & Khawar Naeem & Rafiq Ahmad & Razaullah Khan & Waqas Saleem & Catalin Iulian Pruncu, 2021. "Application of Exact and Multi-Heuristic Approaches to a Sustainable Closed Loop Supply Chain Network Design," Sustainability, MDPI, vol. 13(5), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2433-:d:504837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Humberto Brandão de Oliveira & Germano Vasconcelos, 2010. "A hybrid search method for the vehicle routing problem with time windows," Annals of Operations Research, Springer, vol. 180(1), pages 125-144, November.
    2. Zhang, Linghong & Wang, Jingguo & You, Jianxin, 2015. "Consumer environmental awareness and channel coordination with two substitutable products," European Journal of Operational Research, Elsevier, vol. 241(1), pages 63-73.
    3. Jayaraman, Vaidyanathan & Ross, Anthony, 2003. "A simulated annealing methodology to distribution network design and management," European Journal of Operational Research, Elsevier, vol. 144(3), pages 629-645, February.
    4. Fateme Heidari & Seyed Hessameddin Zegordi & Reza Tavakkoli-Moghaddam, 2018. "Modeling truck scheduling problem at a cross-dock facility through a bi-objective bi-level optimization approach," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1155-1170, June.
    5. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    6. Qian, Jiani & Eglese, Richard, 2016. "Fuel emissions optimization in vehicle routing problems with time-varying speeds," European Journal of Operational Research, Elsevier, vol. 248(3), pages 840-848.
    7. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    8. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    9. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    10. Jaehyun Choi & Jia Xuelei & WoonSeong Jeong, 2018. "Optimizing the Construction Job Site Vehicle Scheduling Problem," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    11. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    12. Sadok Turki & Stanislav Didukh & Christophe Sauvey & Nidhal Rezg, 2017. "Optimization and Analysis of a Manufacturing–Remanufacturing–Transport–Warehousing System within a Closed-Loop Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-20, April.
    13. Hong, Jiangtao & Diabat, Ali & Panicker, Vinay V. & Rajagopalan, Sridharan, 2018. "A two-stage supply chain problem with fixed costs: An ant colony optimization approach," International Journal of Production Economics, Elsevier, vol. 204(C), pages 214-226.
    14. de Jong, Gerard & Ben-Akiva, Moshe, 2007. "A micro-simulation model of shipment size and transport chain choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 950-965, November.
    15. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Sustainable SC through the complete reprocessing of end-of-life products by manufacturers: A traditional versus social responsibility company perspective," European Journal of Operational Research, Elsevier, vol. 233(2), pages 359-373.
    16. Asad Kamal & Rai Waqas Azfar & Bashir Salah & Waqas Saleem & Muhammad Abas & Razaullah Khan & Catalin I. Pruncu, 2021. "Quantitative Analysis of Sustainable Use of Construction Materials for Supply Chain Integration and Construction Industry Performance through Structural Equation Modeling (SEM)," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    17. M Wen & J Larsen & J Clausen & J-F Cordeau & G Laporte, 2009. "Vehicle routing with cross-docking," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1708-1718, December.
    18. Ozdemir, Deniz & Yucesan, Enver & Herer, Yale T., 2006. "Multi-location transshipment problem with capacitated transportation," European Journal of Operational Research, Elsevier, vol. 175(1), pages 602-621, November.
    19. Ming Liu & Rongfan Liu & Zhanguo Zhu & Chengbin Chu & Xiaoyi Man, 2018. "A Bi-Objective Green Closed Loop Supply Chain Design Problem with Uncertain Demand," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    20. Fonseca, Gabriela B. & Nogueira, Thiago H. & Ravetti, Martín Gómez, 2019. "A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 139-154.
    21. M. Fonseca & Álvaro García-Sánchez & Miguel Ortega-Mier & Francisco Saldanha-da-Gama, 2010. "A stochastic bi-objective location model for strategic reverse logistics," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 158-184, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Puspita Sari & Nur Aini Masruroh & Anna Maria Sri Asih, 2021. "Extended Maximal Covering Location and Vehicle Routing Problems in Designing Smartphone Waste Collection Channels: A Case Study of Yogyakarta Province, Indonesia," Sustainability, MDPI, vol. 13(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeid Rezaei & Amirsaman Kheirkhah, 2018. "A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations," Computational and Mathematical Organization Theory, Springer, vol. 24(1), pages 51-98, March.
    2. Xi, Xiang & Changchun, Liu & Yuan, Wang & Loo Hay, Lee, 2020. "Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    4. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    5. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    6. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.
    7. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    8. Dezhi Zhang & Xin Wang & Shuangyan Li & Nan Ni & Zhuo Zhang, 2018. "Joint optimization of green vehicle scheduling and routing problem with time-varying speeds," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    9. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    10. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    11. Arjun Paul & Ravi Shankar Kumar & Chayanika Rout & Adrijit Goswami, 2021. "A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 962-993, December.
    12. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    13. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    14. Longlong Leng & Yanwei Zhao & Zheng Wang & Jingling Zhang & Wanliang Wang & Chunmiao Zhang, 2019. "A Novel Hyper-Heuristic for the Biobjective Regional Low-Carbon Location-Routing Problem with Multiple Constraints," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
    15. Sajad Karimi & Zaniar Ardalan & Omid Poursabzi & B. Naderi, 2023. "Toward a safe supply chain: Incorporating accident, physical, psychosocial and mental overload risks into supply chain network," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5579-5595, June.
    16. Yi Liao & Ali Diabat & Chaher Alzaman & Yiqiang Zhang, 2020. "Modeling and heuristics for production time crashing in supply chain network design," Annals of Operations Research, Springer, vol. 288(1), pages 331-361, May.
    17. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    18. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    19. Bray, Garrett & Cebon, David, 2022. "Selection of vehicle size and extent of multi-drop deliveries for autonomous goods vehicles: An assessment of potential for change," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2433-:d:504837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.