IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1580-d492016.html
   My bibliography  Save this article

Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)

Author

Listed:
  • Peng Su

    (School of Geographic Science, Qinghai Normal University, Xining 810008, China)

  • Anyu Zhang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Ran Wang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Jing’ai Wang

    (School of Geographic Science, Qinghai Normal University, Xining 810008, China
    Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yuan Gao

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Fenggui Liu

    (School of Geographic Science, Qinghai Normal University, Xining 810008, China
    Academy of Plateau Science and Sustainability, Xining 810008, China)

Abstract

Extreme temperature events, which are part of global climate change, are a growing threat to crop production, especially to such temperature-sensitive crops as rice. As a result, the traditional rice-growing areas are also likely to shift. The MaxEnt model was used for predicting the areas potentially suitable for rice in the short term (2016–2035) and in the medium term (2046–2065) and under two scenarios developed by the Intergovernmental Panel on Climate Change, namely representative concentration pathway (RCP) 4.5 (the intermediate scenario) and RCP 8.5 (sometimes referred to as the worst-case scenario). The predictions, on verification, were seen to be highly accurate: the AUC—area under the curve—value of the MaxEnt model was > 0.85. The model made the following predictions. (1) Areas highly suitable for rice crops will continue to be concentrated mainly in the current major rice-production areas, and areas only marginally suitable will be concentrated mainly in the rainforest region. (2) Overall, although the current pattern of the distribution of such areas would remain more or less unchanged, their extent will mainly decrease in the subtropics but increase in the tropics and in high-latitude regions. (3) The extent of such areas will decrease in the short term but increase in the medium term.

Suggested Citation

  • Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1580-:d:492016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    2. Ran Wang & Yao Jiang & Peng Su & Jing’ai Wang, 2019. "Global Spatial Distributions of and Trends in Rice Exposure to High Temperature," Sustainability, MDPI, vol. 11(22), pages 1-53, November.
    3. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weidong Ma & Wei Jia & Yuantao Zhou & Fenggui Liu & Jing’ai Wang, 2022. "Prediction of Suitable Future Natural Areas for Highland Barley on the Qinghai-Tibet Plateau under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    2. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    3. Diego Portalanza & Finbarr G. Horgan & Valeria Pohlmann & Santiago Vianna Cuadra & Malena Torres-Ulloa & Eduardo Alava & Simone Ferraz & Angelica Durigon, 2022. "Potential Impact of Future Climates on Rice Production in Ecuador Determined Using Kobayashi’s ‘Very Simple Model’," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    4. Sujith S. Ratnayake & Michael Reid & Nicolette Larder & Harsha K. Kadupitiya & Danny Hunter & Punchi B. Dharmasena & Lalit Kumar & Benjamin Kogo & Keminda Herath & Champika S. Kariyawasam, 2023. "Impact of Climate Change on Paddy Farming in the Village Tank Cascade Systems of Sri Lanka," Sustainability, MDPI, vol. 15(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    2. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    3. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Kishore, Avinash & Singh, Vartika, 2021. "Seeds, Water, and Markets to Increase Wheat Productivity in Bihar, India," 2021 Conference, August 17-31, 2021, Virtual 315022, International Association of Agricultural Economists.
    5. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    6. Schmidt, Heiko & Radinger, Johannes & Teschlade, Daniel & Stoll, Stefan, 2020. "The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt," Ecological Modelling, Elsevier, vol. 418(C).
    7. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Muhammad Waheed & Shiekh Marifatul Haq & Fahim Arshad & Muhammad Azhar Jameel & Manzer H. Siddiqui & Rainer W. Bussmann & Nabeel Manshoor & Saud Alamri, 2023. "Where Will Threatened Aegle marmelos L., a Tree of the Semi-Arid Region, Go under Climate Change? Implications for the Reintroduction of the Species," Land, MDPI, vol. 12(7), pages 1-19, July.
    9. Yujie Liu & Qiaomin Chen & Quansheng Ge & Junhu Dai & Yue Dou, 2018. "Effects of climate change and agronomic practice on changes in wheat phenology," Climatic Change, Springer, vol. 150(3), pages 273-287, October.
    10. Ramírez-Rodrigues, Melissa A. & Alderman, Phillip D. & Stefanova, Lydia & Cossani, C. Mariano & Flores, Dagoberto & Asseng, Senthold, 2016. "The value of seasonal forecasts for irrigated, supplementary irrigated, and rainfed wheat cropping systems in northwest Mexico," Agricultural Systems, Elsevier, vol. 147(C), pages 76-86.
    11. Barbora Sedova & Matthias Kalkuhl & Robert Mendelsohn, 2020. "Distributional Impacts of Weather and Climate in Rural India," Economics of Disasters and Climate Change, Springer, vol. 4(1), pages 5-44, April.
    12. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    13. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    14. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    15. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    16. Awudu Abdulai, 2018. "Simon Brand Memorial Address," Agrekon, Taylor & Francis Journals, vol. 57(1), pages 28-39, January.
    17. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    18. Duque-Lazo, J. & van Gils, H. & Groen, T.A. & Navarro-Cerrillo, R.M., 2016. "Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia," Ecological Modelling, Elsevier, vol. 320(C), pages 62-70.
    19. Kamaljit Banger & Hanqin Tian & Bo Tao & Wei Ren & Shufen Pan & Shree Dangal & Jia Yang, 2015. "Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes," Climatic Change, Springer, vol. 132(4), pages 575-588, October.
    20. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1580-:d:492016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.