IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p708-d479521.html
   My bibliography  Save this article

Analysis and Countermeasures of China’s Green Electric Power Development

Author

Listed:
  • Keke Wang

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy Power and Low-Carbon Development, School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Dongxiao Niu

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy Power and Low-Carbon Development, School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Min Yu

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy Power and Low-Carbon Development, School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Yi Liang

    (School of Management, Hebei GEO University, Shijiazhuang 050031, China
    Strategy and Management Base of Mineral Resources in Hebei Province, Hebei GEO University, Shijiazhuang 050031, China)

  • Xiaolong Yang

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy Power and Low-Carbon Development, School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Jing Wu

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Xiaomin Xu

    (School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy Power and Low-Carbon Development, School of Economics and Management, North China Electric Power University, Changping District, Beijing 102206, China)

Abstract

The green development of electric power is a key measure to alleviate the shortage of energy supply, adjust the energy structure, reduce environmental pollution and improve energy efficiency. Firstly, the situation and challenges of China’s power green development is analyzed. On this basis, the power green development models are categorized into two typical research objects, which are multi-energy synergy mode, represented by integrated energy systems, and multi-energy combination mode with clean energy participation. The key points of the green power development model with the consumption of new energy as the core are reviewed, and then China’s exploration of the power green development system and the latest research results are reviewed. Finally, the key scientific issues facing China’s power green development are summarized and put forward targeted countermeasures and suggestions.

Suggested Citation

  • Keke Wang & Dongxiao Niu & Min Yu & Yi Liang & Xiaolong Yang & Jing Wu & Xiaomin Xu, 2021. "Analysis and Countermeasures of China’s Green Electric Power Development," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:708-:d:479521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).
    2. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    3. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    4. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    6. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    7. Wang, Tan & Gong, Yu & Jiang, Chuanwen, 2014. "A review on promoting share of renewable energy by green-trading mechanisms in power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 923-929.
    8. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    9. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    10. Wang, Haixin & Yang, Junyou & Chen, Zhe & Li, Gen & Liang, Jun & Ma, Yiming & Dong, Henan & Ji, Huichao & Feng, Jiawei, 2020. "Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks," Applied Energy, Elsevier, vol. 267(C).
    11. Lin, Boqiang & Jia, Zhijie, 2020. "Is emission trading scheme an opportunity for renewable energy in China? A perspective of ETS revenue redistributions," Applied Energy, Elsevier, vol. 263(C).
    12. Zhike Lv & Ting Xu, 2019. "Trade openness, urbanization and CO emissions: Dynamic panel data analysis of middle-income countries," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(3), pages 317-330, April.
    13. Balat, Havva, 2008. "Contribution of green energy sources to electrical power production of Turkey: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1652-1666, August.
    14. Xin-gang, Zhao & Tian-tian, Feng & Lu, Cui & Xia, Feng, 2014. "The barriers and institutional arrangements of the implementation of renewable portfolio standard: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 371-380.
    15. repec:dau:papers:123456789/2570 is not listed on IDEAS
    16. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    17. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    18. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    19. Jiawei Feng & Junyou Yang & Haixin Wang & Huichao Ji & Martin Onyeka Okoye & Jia Cui & Weichun Ge & Bo Hu & Gang Wang, 2020. "Optimal Dispatch of High-Penetration Renewable Energy Integrated Power System Based on Flexible Resources," Energies, MDPI, vol. 13(13), pages 1-19, July.
    20. Pearre, Nathaniel & Swan, Lukas, 2020. "Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy," Energy, Elsevier, vol. 203(C).
    21. Yu, Xianyu & Wu, Zemin & Wang, Qunwei & Sang, Xiuzhi & Zhou, Dequn, 2020. "Exploring the investment strategy of power enterprises under the nationwide carbon emissions trading mechanism: A scenario-based system dynamics approach," Energy Policy, Elsevier, vol. 140(C).
    22. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    23. Jafari, Amirreza & Ganjeh Ganjehlou, Hamed & Khalili, Tohid & Bidram, Ali, 2020. "A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids," Applied Energy, Elsevier, vol. 270(C).
    24. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    25. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    26. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    27. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    28. Sorknæs, P. & Lund, Henrik & Skov, I.R. & Djørup, S. & Skytte, K. & Morthorst, P.E. & Fausto, F., 2020. "Smart Energy Markets - Future electricity, gas and heating markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    29. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    30. Keppler, Jan Horst & Cruciani, Michel, 2010. "Rents in the European power sector due to carbon trading," Energy Policy, Elsevier, vol. 38(8), pages 4280-4290, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Wang & Qiang Yang & Xuenan Wu & Ruichen Wang & Tilei Gao & Yuntong Liu, 2023. "A Study of Trends in Low-Energy Development Patterns in China: A Data-Driven Approach," Sustainability, MDPI, vol. 15(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    2. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    3. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).
    4. Wang, Tan & Gong, Yu & Jiang, Chuanwen, 2014. "A review on promoting share of renewable energy by green-trading mechanisms in power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 923-929.
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Ji, Huichao & Wang, Haixin & Yang, Junyou & Feng, Jiawei & Yang, Yongyue & Okoye, Martin Onyeka, 2021. "Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks," Energy, Elsevier, vol. 234(C).
    7. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).
    8. Feng, Huchen & Hu, Yu-Jie & Li, Chengjiang & Wang, Honglei, 2023. "Rolling horizon optimisation strategy and initial carbon allowance allocation model to reduce carbon emissions in the power industry: Case of China," Energy, Elsevier, vol. 277(C).
    9. Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    10. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    11. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    12. Louisa Jane Di Felice & Maddalena Ripa & Mario Giampietro, 2018. "Deep Decarbonisation from a Biophysical Perspective: GHG Emissions of a Renewable Electricity Transformation in the EU," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    13. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    14. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    15. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
    16. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    17. Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
    18. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    19. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    20. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:708-:d:479521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.