IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p576-d477470.html
   My bibliography  Save this article

An Eco-Efficiency Assessment of Bio-Based Diesel Substitutes: A Case Study in Thailand

Author

Listed:
  • Napapat Permpool

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand)

  • Awais Mahmood

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand)

  • Hafiz Usman Ghani

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand)

  • Shabbir H. Gheewala

    (The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
    Center of Excellence on Energy Technology and Environment (CEE), PERDO, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand)

Abstract

The development of new bio-based diesel substitutes can improve their compatibility with diesel engines. Nevertheless, for actual implementation, their environmental and economic performance needs to be studied. This study quantified the eco-efficiency of three bio-based diesels, viz., fatty acid methyl ester (FAME), partially hydrogenated FAME (H-FAME), and bio-hydrogenated diesel (BHD), to address the perspective of producers as well as policymakers for implementing the advanced diesel alternatives. The eco-efficiency was assessed as a ratio of life cycle costing as the economic indicator and three different environmental damages—human health, ecosystem quality, and resource availability. The eco-efficiency of FAME was the most favorable among all the potential substitutes with regard to human health and ecosystem quality, but the least favorable for resource availability impact. Even though BHD was beneficial in terms of life cycle costing, it was the least preferable when considering human health and ecosystem quality, though it performed the best for resource availability. H-FAME was also promising, in line with FAME. It is suggested that the technologies for BHD production should be improved, especially the catalyst used, which contributed greatly to environmental impacts and costs.

Suggested Citation

  • Napapat Permpool & Awais Mahmood & Hafiz Usman Ghani & Shabbir H. Gheewala, 2021. "An Eco-Efficiency Assessment of Bio-Based Diesel Substitutes: A Case Study in Thailand," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:576-:d:477470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    2. Huppes, Gjalt & Ishikawa, Masanobu, 2009. "Eco-efficiency guiding micro-level actions towards sustainability: Ten basic steps for analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1687-1700, April.
    3. Napapat Permpool & Hafiz Usman Ghani & Shabbir H. Gheewala, 2020. "An In-Depth Environmental Sustainability Analysis of Conventional and Advanced Bio-Based Diesels in Thailand," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    4. Pleanjai, Somporn & Gheewala, Shabbir H., 2009. "Full chain energy analysis of biodiesel production from palm oil in Thailand," Applied Energy, Elsevier, vol. 86(Supplemen), pages 209-214, November.
    5. Kunnika Changwichan & Thapat Silalertruksa & Shabbir H. Gheewala, 2018. "Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    2. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    3. Simone Blanc & Stefano Massaglia & Filippo Brun & Cristiana Peano & Angela Mosso & Nicole Roberta Giuggioli, 2019. "Use of Bio-Based Plastics in the Fruit Supply Chain: An Integrated Approach to Assess Environmental, Economic, and Social Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    4. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    5. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    6. Claudia Marcela Betancourt Morales & Jhon Wilder Zartha Sossa, 2020. "Circular economy in Latin America: A systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2479-2497, September.
    7. Aurélien Bruel & Jakub Kronenberg & Nadège Troussier & Bertrand Guillaume, 2019. "Linking Industrial Ecology and Ecological Economics: A Theoretical and Empirical Foundation for the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 12-21, February.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    9. Hideki Kobayashi & Masahiro Kato & Yukishige Maezawa & Kenji Sano, 2011. "An R&D Management Framework for Eco-Technology," Sustainability, MDPI, vol. 3(8), pages 1-20, August.
    10. Archer, Sophie A. & Murphy, Richard J. & Steinberger-Wilckens, Robert, 2018. "Methodological analysis of palm oil biodiesel life cycle studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 694-704.
    11. Lian, Shuang & Li, Huijuan & Tang, Jinqiang & Tong, Dongmei & Hu, Changwei, 2012. "Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel," Applied Energy, Elsevier, vol. 98(C), pages 540-547.
    12. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    13. Salvatore Ammirato & Alberto Michele Felicetti & Cinzia Raso & Bruno Antonio Pansera & Antonio Violi, 2020. "Agritourism and Sustainability: What We Can Learn from a Systematic Literature Review," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    14. Najat Omran & Amir Hamzah Sharaai & Ahmad Hariza Hashim, 2021. "Visualization of the Sustainability Level of Crude Palm Oil Production: A Life Cycle Approach," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    15. Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
    16. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    17. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    18. BĂTUȘARU Cristina-Maria & SBÂRCEA Ioana-Raluca, 2023. "Harmonizing Circularity: Romania’S Progressive Efforts Towards Circular Economy Integration In Europe," Management of Sustainable Development, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 15(1), pages 62-74, June.
    19. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    20. Kunnika Changwichan & Thapat Silalertruksa & Shabbir H. Gheewala, 2018. "Eco-Efficiency Assessment of Bioplastics Production Systems and End-of-Life Options," Sustainability, MDPI, vol. 10(4), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:576-:d:477470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.