IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13862-d703028.html
   My bibliography  Save this article

Connectivity in Superblock Street Networks: Measuring Distance, Directness, and the Diversity of Pedestrian Paths

Author

Listed:
  • Martin Scoppa

    (Department of Architectural Engineering, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates)

  • Rim Anabtawi

    (Department of Architectural Engineering, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates)

Abstract

Superblocks are a common urban development strategy used in cities of the United Arab Emirates and the larger Gulf region. In planning new neighborhoods, these cities utilize superblocks structured using various street network designs. Despite their key role in shaping its main transportation network, the connectivity of these designs has not been frequently studied. This paper addresses this research gap, analyzing ten different superblock designs, and focusing on their internal and external connectivity properties. Internal connectivity is studied by measuring connections between plots in the superblocks. External connectivity is measured from plots to the superblocks’ corners, the points from which to access surrounding areas. Connectivity is measured in terms of distance, directness, and route diversity. The results show that strong similarities exist across the studied designs, particularly in terms of travel distances. Differences are found in terms of efficiency and, most notably, route diversity. Findings are discussed in relation to walkability, the costs associated to each design given network length variations, and the importance of creating rich and diverse street systems that support open-ended exploration. While based on a sample of ideal cases and in need of validation with built cases, this paper outlines a method by which to evaluate and compare superblock network design alternatives.

Suggested Citation

  • Martin Scoppa & Rim Anabtawi, 2021. "Connectivity in Superblock Street Networks: Measuring Distance, Directness, and the Diversity of Pedestrian Paths," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13862-:d:703028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Hillier, Bill & Penn, Alan, 1992. "Dense civilisations: the shape of cities in the 21st century," Applied Energy, Elsevier, vol. 43(1-3), pages 41-66.
    3. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    4. Michael W. Mehaffy & Sergio Porta & Ombretta Romice, 2015. "The "neighborhood unit" on trial: a case study in the impacts of urban morphology," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 8(2), pages 199-217, June.
    5. Khaled Alawadi & Ouafa Benkraouda, 2018. "What happened to Abu Dhabi’s urbanism? The question of regional integration," Journal of Urban Design, Taylor & Francis Journals, vol. 23(3), pages 367-394, May.
    6. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    7. Wesley Marshall & Norman Garrick, 2012. "Community design and how much we drive," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(2), pages 5-21.
    8. Wang, Fahui & Antipova, Anzhelika & Porta, Sergio, 2011. "Street centrality and land use intensity in Baton Rouge, Louisiana," Journal of Transport Geography, Elsevier, vol. 19(2), pages 285-293.
    9. repec:cdl:uctcwp:qt3886c8n9 is not listed on IDEAS
    10. Jacopo Scudellari & Luca Staricco & Elisabetta Vitale Brovarone, 2020. "Implementing the Supermanzana approach in Barcelona. Critical issues at local and urban level," Journal of Urban Design, Taylor & Francis Journals, vol. 25(6), pages 675-696, November.
    11. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    12. repec:cdl:uctcwp:qt7gs0p1nc is not listed on IDEAS
    13. Marcial Echenique & Anthony Hargreaves & Gordon Mitchell & Anil Namdeo, 2012. "Growing Cities Sustainably," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(2), pages 121-137.
    14. Stigell, Erik & Schantz, Peter, 2011. "Methods for determining route distances in active commuting – Their validity and reproducibility," Journal of Transport Geography, Elsevier, vol. 19(4), pages 563-574.
    15. Chen Feng & John Peponis, 2020. "The definition of syntactic types: The generation, analysis, and sorting of universes of superblock designs," Environment and Planning B, , vol. 47(6), pages 1031-1046, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Alberti, 2023. "Regenerative Streets: Pathways towards the Post-Automobile City," Sustainability, MDPI, vol. 15(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    2. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    3. Anfal Al-Ali & Praveen Maghelal & Khaled Alawadi, 2020. "Assessing Neighborhood Satisfaction and Social Capital in a Multi-Cultural Setting of an Abu Dhabi Neighborhood," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    4. Sven Eggimann, 2022. "The potential of implementing superblocks for multifunctional street use in cities," Nature Sustainability, Nature, vol. 5(5), pages 406-414, May.
    5. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    6. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    7. Chih-Hao Wang, 2020. "Does compact development promote a seismic-resistant city? Application of seismic-damage statistical models to Taichung, Taiwan," Environment and Planning B, , vol. 47(1), pages 84-101, January.
    8. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    9. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    10. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    11. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    12. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    13. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    14. Teqi Dai & Tiantian Ding & Qingfang Liu & Bingxin Liu, 2022. "Node Centrality Comparison between Bus Line and Passenger Flow Networks in Beijing," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    15. Jianhua Ni & Tianlu Qian & Changbai Xi & Yikang Rui & Jiechen Wang, 2016. "Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis," IJERPH, MDPI, vol. 13(8), pages 1-13, August.
    16. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    17. Benita, Francisco & Piliouras, Georgios, 2020. "Location, location, usage: How different notions of centrality can predict land usage in Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    19. Kevin Chan & Steven Farber, 2020. "Factors underlying the connections between active transportation and public transit at commuter rail in the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 47(5), pages 2157-2178, October.
    20. Boeing, Geoff, 2018. "Measuring the Complexity of Urban Form and Design," SocArXiv bxhrz, Center for Open Science.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13862-:d:703028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.