IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12825-d683246.html
   My bibliography  Save this article

Incorporating Future Climate Scenarios in Oil Industry’s Risk Assessment: A Greek Refinery Case Study

Author

Listed:
  • Theodoros Katopodis

    (Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece
    Environmental Research Laboratory, NCSR “Demokritos”, 15310 Agia Paraskevi, Greece)

  • Emmanuel D. Adamides

    (Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece)

  • Athanasios Sfetsos

    (Environmental Research Laboratory, NCSR “Demokritos”, 15310 Agia Paraskevi, Greece)

  • Antonios Mountouris

    (Hellenic Petroleum SA, 15125 Athens, Greece)

Abstract

The impacts of climate change are anticipated to become stronger in the future, leading to higher costs and more severe accidents in the oil industry’s facilities and surrounding communities. Motivated by this, the main objective of this paper is to develop, for the oil industry, a risk assessment methodology that considers future climate projections. In the context of an action research effort, carried out in a refinery in Greece, we adapted the organization’s extant risk management approach based on the Risk Assessment Matrix (RAM) and suggested a risk quantification process that incorporates future climate projections. The Climate Risk Assessment Matrix (CRAM) was developed to be used to assess the exposure of the facility’s assets, including human resources, to future climate risks. To evaluate CRAM, a comparison with RAM for the specific organization for the period 1980–2004 was made. Next, the application of CRAM for the period 2025–2049 indicated that, even though the resilience of the operations of the company to extreme conditions seems adequate at present, increased attention should be paid in the future to the resilience of refinery processes, the cooling system, and human resources. Beyond the specific case, the paper provides lessons for similar organizations and infrastructures located elsewhere.

Suggested Citation

  • Theodoros Katopodis & Emmanuel D. Adamides & Athanasios Sfetsos & Antonios Mountouris, 2021. "Incorporating Future Climate Scenarios in Oil Industry’s Risk Assessment: A Greek Refinery Case Study," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12825-:d:683246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milazzo, Maria Francesca & Ancione, Giuseppa & Salzano, Ernesto & Maschio, Giuseppe, 2013. "Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 106-110.
    2. Scira Menoni & Daniela Molinari & Dennis Parker & Francesco Ballio & Sue Tapsell, 2012. "Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2057-2082, December.
    3. Maria Papathoma-Koehle & Catrin Promper & Roxana Bojariu & Roxana Cica & András Sik & Kinga Perge & Peter László & Erika Balázs Czikora & Alexandru Dumitrescu & Cosmin Turcus & Marius-Victor Birsan & , 2016. "A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 89-109, May.
    4. Ana Cruz & Elisabeth Krausmann, 2013. "Vulnerability of the oil and gas sector to climate change and extreme weather events," Climatic Change, Springer, vol. 121(1), pages 41-53, November.
    5. Erik Pruyt & Diederik Wijnmalen, 2010. "National Risk Assessment in The Netherlands," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 133-143, Springer.
    6. Garg, Amit & Naswa, Prakriti & Shukla, P.R., 2015. "Energy infrastructure in India: Profile and risks under climate change," Energy Policy, Elsevier, vol. 81(C), pages 226-238.
    7. David H. Cobon & Allyson A. J. Williams & Brendan Power & David McRae & Peter Davis, 2016. "Risk matrix approach useful in adapting agriculture to climate change," Climatic Change, Springer, vol. 138(1), pages 173-189, September.
    8. Jean-Pierre Signoret & Alain Leroy, 2021. "Reliability Assessment of Safety and Production Systems," Springer Series in Reliability Engineering, Springer, number 978-3-030-64708-7, March.
    9. Jean-Pierre Signoret & Alain Leroy, 2021. "Hazard and Operability Study (HAZOP)," Springer Series in Reliability Engineering, in: Reliability Assessment of Safety and Production Systems, chapter 0, pages 157-164, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Toderaș & Vlad Alexandru Florea & Răzvan Bogdan Itu, 2023. "Stability Analysis of the Tailings Dam for the Purpose of Closing, Greening, and Ensuring Its Safety—Study Case," Sustainability, MDPI, vol. 15(9), pages 1-27, May.
    2. Hu, Lei & Song, Min & Wen, Fenghua & Zhang, Yun & Zhao, Yunning, 2025. "The impact of climate attention on risk spillover effect in energy futures markets," Energy Economics, Elsevier, vol. 141(C).
    3. Xie, Li & Li, Siyi, 2024. "Climate risk and energy-saving technology innovation: Evidence from Chinese prefecture-level cities," Energy Economics, Elsevier, vol. 139(C).
    4. Mariusz Adynkiewicz-Piragas & Bartłomiej Miszuk, 2020. "Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    5. Gaogeng Zhu & Guoming Chen & Jingyu Zhu & Xiangkun Meng & Xinhong Li, 2022. "Modeling the Evolution of Major Storm-Disaster-Induced Accidents in the Offshore Oil and Gas Industry," IJERPH, MDPI, vol. 19(12), pages 1-27, June.
    6. Jesse M. Keenan, 2018. "Regional resilience trust funds: an exploratory analysis for leveraging insurance surcharges," Environment Systems and Decisions, Springer, vol. 38(1), pages 118-139, March.
    7. Valente, Matteo & Ricci, Federica & Cozzani, Valerio, 2025. "A systematic review of Resilience Engineering applications to Natech accidents in the chemical and process industry," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    8. Nicholas Santella, 2023. "Climate related trends in US hazardous material releases caused by natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 735-756, January.
    9. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Xilin Liu & Huizhu Chen, 2020. "Regional assessment on ecological risk of ecosystems under natural hazards: an application in Guangdong Province (SE China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 205-229, January.
    11. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    12. Bernier, Carl & Gidaris, Ioannis & Balomenos, Georgios P. & Padgett, Jamie E., 2019. "Assessing the accessibility of petrochemical facilities during storm surge events," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 155-167.
    13. Beheshtian, Arash & Donaghy, Kieran P. & Richard Geddes, R. & Oliver Gao, H., 2018. "Climate-adaptive planning for the long-term resilience of transportation energy infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 99-122.
    14. Zhang, Yongji & Liu, Lingxi & Lan, Minghui & Su, Zhi & Wang, Ke, 2024. "Climate change and economic policy uncertainty: Evidence from major countries around the world," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1045-1060.
    15. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    16. Kirsti Russell Vastveit & Kerstin Eriksson & Ove Njå, 2014. "Critical reflections on municipal risk and vulnerability analyses as decision support tools: the role of regulation regimes," Environment Systems and Decisions, Springer, vol. 34(3), pages 443-455, September.
    17. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    18. Amanda R. Carrico & Heather Barnes Truelove & Nicholas E. Williams, 2019. "Social capital and resilience to drought among smallholding farmers in Sri Lanka," Climatic Change, Springer, vol. 155(2), pages 195-213, July.
    19. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    20. Berke Ogulcan Parlak & Huseyin Ayhan Yavasoglu, 2023. "A Comprehensive Analysis of In-Line Inspection Tools and Technologies for Steel Oil and Gas Pipelines," Sustainability, MDPI, vol. 15(3), pages 1-25, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12825-:d:683246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.