IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12463-d677082.html
   My bibliography  Save this article

A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review

Author

Listed:
  • Xiaohui Wang

    (College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Yao Wu

    (College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Kiril Manevski

    (Department of Agroecology, Aarhus University, 8830 Tjele, Denmark
    Sino-Danish Center of Education and Research, Beijing 101400, China)

  • Manqi Fu

    (College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Xiaogang Yin

    (College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Fu Chen

    (College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
    Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

Abstract

It is essential for the sustainable development of farmland landscapes to balance ecosystem service trade-offs and improve resource use efficiency during crop production. Thus, an integrative and concept-centric qualitative approach was applied by combining the patch–corridor–matrix model of landscape ecology and the crop layout theory of farming systems into a theoretical framework. The thesis concludes that a farmland landscape comprises three compositions: the crop (the main crop and the service crop), the non-crop, and the non-vegetation, leading to heterogeneous composition and configuration. The main crop, typically displayed as large patches with a high distribution ratio, provides most of the provisioning services, while the service crop performs many regulation services. The non-crop and non-vegetation compositions often appear as strips that can connect different patches as corridors and support the provisioning services of crops. Non-crop compositions mainly focus on support and regulation services, while non-vegetation compositions support farming operations. Further research is needed in several respects, including the ecological impact and ecosystem service trade-offs of the composition and configuration heterogeneity, and strategies for the adoption of cropping systems and agronomic measures at the landscape scale, which are essential to the evaluation, improvement, and redesign of farmland landscapes.

Suggested Citation

  • Xiaohui Wang & Yao Wu & Kiril Manevski & Manqi Fu & Xiaogang Yin & Fu Chen, 2021. "A Framework for the Heterogeneity and Ecosystem Services of Farmland Landscapes: An Integrative Review," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12463-:d:677082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Tilman, 1998. "The greening of the green revolution," Nature, Nature, vol. 396(6708), pages 211-212, November.
    2. B. A. Woodcock & M. P. D. Garratt & G. D. Powney & R. F. Shaw & J. L. Osborne & J. Soroka & S. A. M. Lindström & D. Stanley & P. Ouvrard & M. E. Edwards & F. Jauker & M. E. McCracken & Y. Zou & S. G. , 2019. "Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Li, Ruihua & Lin, Hua & Niu, Haipeng & Chen, Yuqi & Zhao, Suxia & Fan, Liangxin, 2019. "Smallholder preference and agroecosystem service trade-offs: A case study in Xinzheng County, China," Agricultural Systems, Elsevier, vol. 168(C), pages 19-26.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    5. David Kleijn & Rachael Winfree & Ignasi Bartomeus & Luísa G Carvalheiro & Mickaël Henry & Rufus Isaacs & Alexandra-Maria Klein & Claire Kremen & Leithen K M'Gonigle & Romina Rader & Taylor H Ricketts , 2015. "Delivery of crop pollination services is an insufficient argument for wild pollinator conservation," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Guo & Minghao Guan & Zhenxing Bian & Qiubing Wang, 2022. "A Quantitative Survey of Effect of Semi-Natural Habitat Composition and Configuration on Landscape Heterogeneity in Arable Land System," Land, MDPI, vol. 11(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    2. Baba, S.H. & Wani, S.A., 2018. "Ecosystem Management Approach for Agricultural Growth in Mountains: Farmers Perception of Ecosystem Services and Dis-Services in Kashmir-India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277556, International Association of Agricultural Economists.
    3. Christophe Lecarpentier & Loïc Pagès & Céline Richard-Molard, 2021. "Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    4. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    5. Maurizio Vrenna & Pier Paolo Peruccio & Xin Liu & Fang Zhong & Yuchi Sun, 2021. "Microalgae as Future Superfoods: Fostering Adoption through Practice-Based Design Research," Sustainability, MDPI, vol. 13(5), pages 1-26, March.
    6. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    7. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    8. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    11. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    12. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    13. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    14. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    15. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    16. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    17. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    18. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    19. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    20. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12463-:d:677082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.