IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11731-d663344.html
   My bibliography  Save this article

Basic Steps to Promote Biorefinery Value Chains in Forestry in Italy

Author

Listed:
  • Swati Tamantini

    (Centro Studi Alpino (CSALP), Department of Innovation in Biological, Agri-Food and Forestry Systems (DIBAF), University of Tuscia, Via Rovigo 7, 38050 Pieve Tesino, TN, Italy)

  • Alberto Del Lungo

    (Centro Studi Alpino (CSALP), Department of Innovation in Biological, Agri-Food and Forestry Systems (DIBAF), University of Tuscia, Via Rovigo 7, 38050 Pieve Tesino, TN, Italy)

  • Manuela Romagnoli

    (Centro Studi Alpino (CSALP), Department of Innovation in Biological, Agri-Food and Forestry Systems (DIBAF), University of Tuscia, Via Rovigo 7, 38050 Pieve Tesino, TN, Italy)

  • Alessandro Paletto

    (Research Centre for Forestry and Wood (CREA), Piazza Nicolini 6, 38123 Trento, TN, Italy)

  • Michael Keller

    (Haute École D’ingénierie et D’architecture de Fribourg, Boulevard de Pérolles 80, 1700 Fribourg, Switzerland)

  • Jacques Bersier

    (Haute École D’ingénierie et D’architecture de Fribourg, Boulevard de Pérolles 80, 1700 Fribourg, Switzerland)

  • Florian Zikeli

    (Centro Studi Alpino (CSALP), Department of Innovation in Biological, Agri-Food and Forestry Systems (DIBAF), University of Tuscia, Via Rovigo 7, 38050 Pieve Tesino, TN, Italy
    Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien (AT), 1060 Vienna, Austria)

Abstract

Biorefineries are an important pillar to conduct the transition toward a circular bioeconomy. Forestry value chains produce wood biomass from harvesting and processing residues that have potential to be used in biorefineries, but currently, these residues are mostly used for energy generation. New biorefineries and new methodologies of wood fractionation allow the production of high value-added products based on carbohydrates and lignin. However, biorefineries based on lignocellulosic feedstock are still few in European countries and even less in Italy. The present study analyses the processes involved in a scenario of establishment of forest biorefineries, reviewing the main components and the actual organization of forestry value chains in Italy. The aim is to have a general vision, to identify and to focus the possibilities of the actual value chains and to fill gaps. The development of the territories is thought of in a perspective of a broader repertoire and more branched value chains than simple energy-generation end use, reviewing the tool for a feasibility study that could potentially involve lignocellulosic biorefineries also based on forest-wood industry feedstocks.

Suggested Citation

  • Swati Tamantini & Alberto Del Lungo & Manuela Romagnoli & Alessandro Paletto & Michael Keller & Jacques Bersier & Florian Zikeli, 2021. "Basic Steps to Promote Biorefinery Value Chains in Forestry in Italy," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11731-:d:663344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianni Barcaccia & Vincenzo D’Agostino & Alessandro Zotti & Bruno Cozzi, 2020. "Impact of the SARS-CoV-2 on the Italian Agri-Food Sector: An Analysis of the Quarter of Pandemic Lockdown and Clues for a Socio-Economic and Territorial Restart," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    2. Edyta Małachowska & Marcin Dubowik & Aneta Lipkiewicz & Kamila Przybysz & Piotr Przybysz, 2020. "Analysis of Cellulose Pulp Characteristics and Processing Parameters for Efficient Paper Production," Sustainability, MDPI, vol. 12(17), pages 1-12, September.
    3. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    4. Fengli Zhang & Dana M. Johnson & Jinjiang Wang & Shuhai Liu & Shimin Zhang, 2018. "Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction," Energies, MDPI, vol. 11(1), pages 1-12, January.
    5. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Notaro & Elisabetta Lovera & Alessandro Paletto, 2022. "Behaviours and attitudes of consumers towards bioplastics: An exploratory study in Italy," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(4), pages 121-135.
    2. Di Letizia, Gerardo & De Lucia, Caterina & Pazienza, Pasquale & Cappelletti, Giulio Mario, 2023. "Forest bioeconomy at regional scale: A systematic literature review and future policy perspectives," Forest Policy and Economics, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    3. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    4. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    5. Rafael Robina Ramírez & Pedro R. Palos-Sánchez, 2018. "Environmental Firms’ Better Attitude towards Nature in the Context of Corporate Compliance," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    6. Shijia Zhang & Zhichao Wang & Jiong Shen & Xuantong Chen & Juan Zhang, 2023. "Isolation of an Acidophilic Cellulolytic Bacterial Strain and Its Cellulase Production Characteristics," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
    7. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    8. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability,, Springer.
    9. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    10. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Barbanera, M. & Lascaro, E. & Foschini, D. & Cotana, F. & Buratti, C., 2018. "Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 124(C), pages 136-143.
    12. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    13. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    14. Pablo Gabriel Rullo & Ramon Costa-Castelló & Vicente Roda & Diego Feroldi, 2018. "Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments," Energies, MDPI, vol. 11(6), pages 1-25, May.
    15. Soto, Felipe & Marques, Gian & Torres-Jiménez, E. & Vieira, Bráulio & Lacerda, André & Armas, Octavio & Guerrero-Villar, F., 2019. "A comparative study of performance and regulated emissions in a medium-duty diesel engine fueled with sugarcane diesel-farnesane and sugarcane biodiesel-LS9," Energy, Elsevier, vol. 176(C), pages 392-409.
    16. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    17. da Rosa-Garzon, Nathália Gonsales & Laure, Hélen Julie & Rosa, José César & Cabral, Hamilton, 2019. "Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome," Renewable Energy, Elsevier, vol. 133(C), pages 941-950.
    18. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    19. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.
    20. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11731-:d:663344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.