IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11665-d662058.html
   My bibliography  Save this article

Development of a Software System for Selecting Steam Power Plant to Convert Municipal Solid Waste to Energy

Author

Listed:
  • Rotimi A. Ibikunle

    (Department of Mechanical Engineering, College of Engineering, Landmark University, PMB 1001, Ipetu Road, Omu-Aran 251103, Nigeria)

  • Isaac F. Titiladunayo

    (Department of Mechanical Engineering, School of Engineering, Federal University of Technology, PMB 704, Akure 340106, Nigeria)

  • Basil O. Akinnuli

    (Department of Industrial and Production Engineering, School of Engineering, Federal University of Technology, PMB 704, Akure 340106, Nigeria)

Abstract

A software system that enhances the selection of appropriate power plant capacity that will convert combustible municipal solid waste (MSW) into energy was developed. The aggregate of waste to be converted was determined and the corresponding heating value was established. The capacities of steam power plants’ components required for the conversion were determined, using thermodynamic mathematical models. An algorithm based on models used to determine the energy potential, the power potential of MSW, the capacities of the components of the steam power plant, were translated into computer soft code using Java programming language; saturated steam and superheated steam tables, together with the thermodynamic properties of the power plant required were incorporated into the soft code. About 584 tons of MSW having a heating value of 20 MJ/kg was the quantity of waste experimented for energy generation. This information was input into the software as data and was processed. Then, the software was able to predict 3245.54 MWh energy potential for the quantity of waste, and electrical power potential of 40.54 MW. The capacities of the steam power plant components that were predicted include 100.35 MW of boiler power, 40.54 MW of turbine power, and 59.80 MW of condenser power. The methodology adopted will make it easy for the managers in the waste-to-energy sector to appropriately select the suitable capacity of the required steam power plant that can convert any quantify of MSW at any geographical location, without going through the engineering calculation and stress or rigor involved in the plant capacity design. Moreover, the accuracy obtained for the software is greater than 99%.

Suggested Citation

  • Rotimi A. Ibikunle & Isaac F. Titiladunayo & Basil O. Akinnuli, 2021. "Development of a Software System for Selecting Steam Power Plant to Convert Municipal Solid Waste to Energy," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11665-:d:662058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    2. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    2. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    3. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    4. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    5. Antonio Barragán-Escandón & Jonathan Miguel Olmedo Ruiz & Jonnathan David Curillo Tigre & Esteban F. Zalamea-León, 2020. "Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    6. Yiyuan Pang & Hong Li & Pan Tang & Chao Chen, 2022. "Synchronization Optimization of Pipe Diameter and Operation Frequency in a Pressurized Irrigation Network Based on the Genetic Algorithm," Agriculture, MDPI, vol. 12(5), pages 1-16, May.
    7. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    8. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    9. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    10. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    11. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    12. Liangjun Peng & Mengdi Gu & Zhijun Peng, 2020. "Study on the Optimized Mode of Waste Governance with Sustainable Urban Development—Case from China’s Urban Waste Classified Collection," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    13. Xu, Ye & Tan, Junyuan & Wang, Xu & Li, Wei & He, Xing & Hu, Xiaoguang & Fan, Yurui, 2022. "Synergetic management of water-energy-food nexus system and GHG emissions under multiple uncertainties: An inexact fractional fuzzy chance constraint programming method," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Cudjoe, Dan & Nketiah, Emmanuel & Obuobi, Bright & Adu-Gyamfi, Gibbson & Adjei, Mavis & Zhu, Bangzhu, 2021. "Forecasting the potential and economic feasibility of power generation using biogas from food waste in Ghana: Evidence from Accra and Kumasi," Energy, Elsevier, vol. 226(C).
    15. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    16. Dehkordi, Seyed Mohammad Mehdi Noorbakhsh & Jahromi, Ahmad Reza Taghipour & Ferdowsi, Ali & Shumal, Mohammad & Dehnavi, Ali, 2020. "Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Hasanzadeh Saray, Marzieh & Baubekova, Aziza & Gohari, Alireza & Eslamian, Seyed Saeid & Klove, Bjorn & Torabi Haghighi, Ali, 2022. "Optimization of Water-Energy-Food Nexus considering CO2 emissions from cropland: A case study in northwest Iran," Applied Energy, Elsevier, vol. 307(C).
    18. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    19. Sharifzadeh, Mahdi & Hien, Raymond Khoo Teck & Shah, Nilay, 2019. "China’s roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and sto," Applied Energy, Elsevier, vol. 235(C), pages 31-42.
    20. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11665-:d:662058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.