IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11573-d660331.html
   My bibliography  Save this article

Life Cycle Assessment of Fungal-Based Composite Bricks

Author

Listed:
  • Lisa Stelzer

    (Applied & Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Friederike Hoberg

    (Applied & Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Vanessa Bach

    (Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

  • Bertram Schmidt

    (Applied & Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Sven Pfeiffer

    (Department of Digital Design Planning and Building, Hochschule Bochum, Am Hochschulcampus 1, 44801 Bochum, Germany)

  • Vera Meyer

    (Applied & Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany)

  • Matthias Finkbeiner

    (Sustainable Engineering, Institute of Environmental Technology, Technische Universität Berlin, 10623 Berlin, Germany)

Abstract

Fungal-based composites as substitutes for construction materials might represent a promising solution to reduce the environmental burdens of the building industry. Such composites can be produced biotechnologically through the cultivation of multicellular fungi that form dense mycelia whilst growing into and onto residual plant biomass from agriculture and forestry. As comprehensive environmental assessments are missing, this paper conducts a life cycle assessment for fungal-based composite bricks considering the categories of climate change, eutrophication, acidification, smog, water scarcity, and land use. Electricity for sterilization, incubation, and the drying process led to 81.4% of a total 0.494 total kg CO 2 eq. for climate change and 58.7% of a total 9.39 × 10 −4 kg SO 2 eq. for acidification. Further, hemp shives and grain mix were identified as hotspots for eutrophication (77.7% of 6.02 × 10 −4 kg PO 4 −3 eq.) and land use (81.8% of 19.4 kg Pt eq.). However, the use of hemp shives, rapeseed straw, or poplar wood chips did not differ in the environmental impacts. Further, lab-scale production was compared with industrial scale-up, which is mostly characterized by energy efficiency showing reduced impacts for all considered categories, e.g., a decrease of 68% in climate change. Recycling should be included in future studies as well as considering the use and end-of-life phase.

Suggested Citation

  • Lisa Stelzer & Friederike Hoberg & Vanessa Bach & Bertram Schmidt & Sven Pfeiffer & Vera Meyer & Matthias Finkbeiner, 2021. "Life Cycle Assessment of Fungal-Based Composite Bricks," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11573-:d:660331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2017. "Assessing the Availability of Terrestrial Biotic Materials in Product Systems (BIRD)," Sustainability, MDPI, vol. 9(1), pages 1-35, January.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Markus Berger & Stephan Pfister & Vanessa Bach & Matthias Finkbeiner, 2015. "Saving the Planet’s Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels," Sustainability, MDPI, vol. 7(6), pages 1-19, May.
    4. Ludwig Dorffmeister, 2018. "European Construction Sector: Upturn Set to Lose Impetus Markedly by 2010 – Selected Results of the EUROCONSTRUCT Summer Conference 2018," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(13), pages 61-68, July.
    5. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaojiao Yang & Ting Wang & Yujie Hu & Qiyun Deng & Shu Mo, 2023. "Comparative Analysis of Research Trends and Hotspots of Foreign and Chinese Building Carbon Emissions Based on Bibliometrics," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    2. Andreas Nicolaidis Lindqvist & Sarah Broberg & Linda Tufvesson & Sammar Khalil & Thomas Prade, 2019. "Bio-Based Production Systems: Why Environmental Assessment Needs to Include Supporting Systems," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    3. Luz Elba Torres-Guevara & Vanessa Prieto-Sandoval & Andres Mejia-Villa, 2021. "Success Drivers for Implementing Circular Economy: A Case Study from the Building Sector in Colombia," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    4. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    5. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    6. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    7. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    8. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    9. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    10. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    11. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    12. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    13. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    14. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    15. Maria Anna Cusenza & Teresa Maria Gulotta & Marina Mistretta & Maurizio Cellura, 2021. "Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings," Energies, MDPI, vol. 14(12), pages 1-21, June.
    16. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    17. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    18. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    19. Arman Hashemi & Heather Cruickshank & Ali Cheshmehzangi, 2015. "Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing," Sustainability, MDPI, vol. 7(6), pages 1-18, June.
    20. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11573-:d:660331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.