IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4225-d1720584.html
   My bibliography  Save this article

A Review of Mycelium Bio-Composites as Energy-Efficient Sustainable Building Materials

Author

Listed:
  • Sina Motamedi

    (Research Group in Energy Technologies and Energy Efficiency (t3e), École de Technologie Supérieure (ÉTS), Université du Québec, Montreal, QC H3C 1K3, Canada)

  • Daniel R. Rousse

    (Research Group in Energy Technologies and Energy Efficiency (t3e), École de Technologie Supérieure (ÉTS), Université du Québec, Montreal, QC H3C 1K3, Canada)

  • Geoffrey Promis

    (Innovative Technologies Laboratory (LTI), University of Picardie Jules Verne, 80025 Amiens, France)

Abstract

The increasing demand for sustainable building solutions has directed attention toward bio-based materials, among which mycelium bio-composites (MBCs) have emerged as promising alternatives to traditional insulation materials. Grown from fungal mycelium and lignocellulosic waste, MBCs offer low embodied energy, biodegradability, and effective hygrothermal performance. This review assesses the current state of the art in MBC fabrication and hygrothermal properties, encompassing both laboratory-scale and industrial methods. MBCs demonstrate thermal conductivity values in the range of 0.036–0.06 W·m −1 ·K −1 , moisture buffering capacity comparable to plant-fiber composites, and up to 70% lower embodied carbon than conventional materials. Key challenges are identified, including process standardization, scalability, and durability under real-world conditions. These composites also offer moisture buffering, compostability, and design flexibility. Moreover, recent advancements in additive manufacturing and microstructural optimization suggest a path toward broader adoption of MBCs in construction. By highlighting critical technical and scientific developments, this review identifies targeted research priorities, including the development of standardized fabrication protocols, quantitative lifecycle assessment of MBCs across varying climates, and strategies to scale up production while maintaining mechanical and hygrothermal consistency.

Suggested Citation

  • Sina Motamedi & Daniel R. Rousse & Geoffrey Promis, 2025. "A Review of Mycelium Bio-Composites as Energy-Efficient Sustainable Building Materials," Energies, MDPI, vol. 18(16), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4225-:d:1720584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    2. Es-sakali, Niima & Charai, Mouatassim & Idrissi Kaitouni, Samir & Ait Laasri, Imad & Mghazli, Mohamed Oualid & Cherkaoui, Moha & Pfafferott, Jens & Ukjoo, Sung, 2023. "Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated lab-scale, in-situ and simulation-based assessment," Applied Energy, Elsevier, vol. 352(C).
    3. Nungnit Wattanavichean & Jakkapon Phanthuwongpakdee & Preeyaporn Koedrith & Pitak Laoratanakul & Boonchock Thaithatgoon & Sayanh Somrithipol & Papichaya Kwantong & Salilaporn Nuankaew & Umpawa Pinruan, 2025. "Mycelium-Based Breakthroughs: Exploring Commercialization, Research, and Next-Gen Possibilities," Circular Economy and Sustainability, Springer, vol. 5(4), pages 3211-3253, August.
    4. Lisa Stelzer & Friederike Hoberg & Vanessa Bach & Bertram Schmidt & Sven Pfeiffer & Vera Meyer & Matthias Finkbeiner, 2021. "Life Cycle Assessment of Fungal-Based Composite Bricks," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    5. Sina Motamedi & Daniel R. Rousse & Geoffrey Promis, 2025. "Microstructure-Driven Hygrothermal Behavior of Mycelium-Based Composites for Bio-Based Insulation," Energies, MDPI, vol. 18(11), pages 1-25, May.
    6. Sina Motamedi & Daniel R. Rousse & Geoffrey Promis, 2023. "The Evolution of Crop-Based Materials in the Built Environment: A Review of the Applications, Performance, and Challenges," Energies, MDPI, vol. 16(14), pages 1-29, July.
    7. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sina Motamedi & Daniel R. Rousse & Geoffrey Promis, 2025. "Microstructure-Driven Hygrothermal Behavior of Mycelium-Based Composites for Bio-Based Insulation," Energies, MDPI, vol. 18(11), pages 1-25, May.
    2. Jihwan Yeon & Seoki Lee & Phillip M Jolly & Anna S Mattila, 2023. "The impact of environmental management on firm performance in the U.S. lodging REITs: The moderating role of outside board of directors," Tourism Economics, , vol. 29(2), pages 513-532, March.
    3. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    4. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    5. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    6. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    7. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    8. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    9. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    10. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    11. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    12. Emilia Conte, 2018. "The Era of Sustainability: Promises, Pitfalls and Prospects for Sustainable Buildings and the Built Environment," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    13. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    14. Riikka Kyrö & Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2012. "Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland," Sustainability, MDPI, vol. 4(7), pages 1-15, July.
    15. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    16. Benedetta Nucci & Fabio Iraldo, 2015. "Comparative life cycle assessment of four insulating boards made with natural and recycled materials," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(3), pages 71-88.
    17. Latifah Abdul Ghani & Ilyanni Syazira Nazaran & Nora’aini Ali & Marlia Mohd Hanafiah, 2020. "Improving Prediction Accuracy of Socio-Human Relationships in a Small-Scale Desalination Plant," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    18. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Ilaria Marotta & Francesco Guarino & Sonia Longo & Maurizio Cellura, 2021. "Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-45, November.
    20. Jozef Mitterpach & Emília Hroncová & Juraj Ladomerský & Jozef Štefko, 2016. "Quantification of Improvement in Environmental Quality for Old Residential Buildings Using Life Cycle Assessment," Sustainability, MDPI, vol. 8(12), pages 1-12, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4225-:d:1720584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.