IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p386-d474434.html
   My bibliography  Save this article

Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign

Author

Listed:
  • Jesús M. Blanco

    (Energy Engineering Department, School of Engineering, Building I, University of the Basque Country, UPV/EHU, Plaza Ingeniero Torres Quevedo s/n, 48013 Bilbao, Spain)

  • Yokasta García Frómeta

    (Vicerrectoria de Investigación e Innovación, Pontificia Universidad Católica Madre y Maestra (PUCMM), Av. Abraham Lincoln esq. Av. Simón Bolívar, Santo Domingo 10109, Dominican Republic)

  • Maggi Madrid

    (Mechanical Engineering Department, School of Engineering, Building I, University of the Basque Country, UPV/EHU, Plaza Ingeniero Torres Quevedo s/n, 48013 Bilbao, Spain)

  • Jesús Cuadrado

    (Mechanical Engineering Department, School of Engineering, Building I, University of the Basque Country, UPV/EHU, Plaza Ingeniero Torres Quevedo s/n, 48013 Bilbao, Spain)

Abstract

The thermal behavior of three different walls, made with and without by-products, is assessed by means of the Finite Element Method, aiming to evaluate its performance in terms of the sustainable construction of the blocks. Results were compared to those obtained from an experimental campaign, aiming at validation of the model. The by-products used for the blocks were “lime sludge” and “sawdust”, whose performance was compared against the traditional blocks made of concrete as a reference, aiming to demonstrate its sustainability, showing decreases of the thermal transmittance up to 10.5%. Additionally, following the same methodology, the thermal behavior of these above-mentioned blocks but now with added internal insulation made of “recycled cellulose” was assessed, showing higher decreases up to 25.5%, increasing sustainability by addressing an additional reduction in waste, so the right combination of using by-products and the insulating filler in their cavities has been revealed as a promising way of optimizing the walls, offering a relevant improvement in energy savings. Finally, when comparing the U-values of the blocks made of concrete without insulation versus those made of by-products, with insulation, improvements up to 33.3% were reached. The adaptation of the procedure through a moisture correction factor was also incorporated.

Suggested Citation

  • Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:386-:d:474434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jihui Yuan, 2018. "Impact of Insulation Type and Thickness on the Dynamic Thermal Characteristics of an External Wall Structure," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    2. Jan Pešta & Tereza Pavlů & Kristina Fořtová & Vladimír Kočí, 2020. "Sustainable Masonry Made from Recycled Aggregates: LCA Case Study," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Shamir Sakir & Sudharshan N. Raman & Md. Safiuddin & A. B. M. Amrul Kaish & Azrul A. Mutalib, 2020. "Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction," Sustainability, MDPI, vol. 12(9), pages 1-35, May.
    4. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    5. Tomasz Kisilewicz, 2019. "On the Role of External Walls in the Reduction of Energy Demand and the Mitigation of Human Thermal Discomfort," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    6. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Design Optimization of a Composite Solar Wall Integrating a PCM in a Individual House: Heating Demand and Thermal Comfort Considerations," Energies, MDPI, vol. 13(21), pages 1-29, October.
    7. Pei Pei & Zongjie Huo & Oscar Sanjuán Martínez & Rubén González Crespo, 2020. "Minimal Green Energy Consumption and Workload Management for Data Centers on Smart City Platforms," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    8. Gyujin Park & Changhee Lee, 2019. "Experimental and Numerical Study on the Characteristics of the Thermal Design of a Large-Area Hot Plate for Nanoimprint Equipment," Sustainability, MDPI, vol. 11(17), pages 1-27, September.
    9. Yao Yin & Yiliang Liu, 2015. "FEM Analysis of Fluid-Structure Interaction in Thermal Heavy Oil Recovery Operations," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
    10. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Xi Deng & Xiao Li & Xiao-Juan Li & Tai-Bing Wei, 2023. "Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio," Sustainability, MDPI, vol. 15(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    3. Jun-Xi Deng & Xiao Li & Xiao-Juan Li & Tai-Bing Wei, 2023. "Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    4. Sarah C. Andersen & Harpa Birgisdottir & Morten Birkved, 2022. "Life Cycle Assessments of Circular Economy in the Built Environment—A Scoping Review," Sustainability, MDPI, vol. 14(11), pages 1-31, June.
    5. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. Jan Fořt & Jan Kočí & Robert Černý, 2021. "Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures," Energies, MDPI, vol. 14(22), pages 1-13, November.
    7. Yupeng Wang & Hiroatsu Fukuda, 2019. "The Influence of Insulation Styles on the Building Energy Consumption and Indoor Thermal Comfort of Multi-Family Residences," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    8. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    9. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    10. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    11. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    12. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    13. Jan Pešta & Markéta Šerešová & Vladimír Kočí, 2020. "Carbon Footprint Assessment of Construction Waste Packaging Using the Package-to-Product Indicator," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    14. Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
    15. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    16. André Furtado & Hugo Rodrigues & António Arêde & Fernanda Rodrigues & Humberto Varum, 2022. "Interactions between Seismic Safety and Energy Efficiency for Masonry Infill Walls: A Shift of the Paradigm," Energies, MDPI, vol. 15(9), pages 1-29, April.
    17. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Han, Xu & Feng, Fuping & Zhang, Jianwei, 2023. "Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition," Energy, Elsevier, vol. 278(PB).
    19. Deng, Zhipeng & Wang, Xuezheng & Jiang, Zixin & Zhou, Nianxin & Ge, Haiwang & Dong, Bing, 2023. "Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction," Energy, Elsevier, vol. 270(C).
    20. Haleh Boostani & Polat Hancer, 2018. "A Model for External Walls Selection in Hot and Humid Climates," Sustainability, MDPI, vol. 11(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:386-:d:474434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.