IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003286.html
   My bibliography  Save this article

Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction

Author

Listed:
  • Deng, Zhipeng
  • Wang, Xuezheng
  • Jiang, Zixin
  • Zhou, Nianxin
  • Ge, Haiwang
  • Dong, Bing

Abstract

Buildings consume more than 70% of electricity in the U.S. In order to reduce building energy consumption, advanced building controls have been developed. However, most building controls are using physics-based models and lack of scalability. Recent development of data-driven control models could overcome this challenge and be automatically developed and implemented on large scale. The purpose of this study was to evaluate the effectiveness, robustness, and scalability of automatic and systematic data-driven predictive control (DDPC) for a large-scale real-world deployment. We first used collected data from 78 buildings in RTEM database to train deep neural network models. Then we applied the models to optimize the HVAC control for energy savings. We focused on over 1000 HVAC units in five different commonly used types, including air handling units, rooftop units, variable air volume systems, fan coil units, and unit ventilators. Next, we evaluated the energy-saving potential and the reduction of greenhouse gas emissions of the proposed method. We found that DDPC was robust and scalable in buildings, with an average energy saving of 65% and peak load reduction of 15% compared to current control systems. The average reduction of GHG emissions for CO2, CH4, and N2O was 15.18 kg, 5.76e-4 kg, and 5.48e-5 kg per m2 per year, respectively. New York State can benefit 11% reduction in carbon emission from DDPC in buildings. For scalability, we also identified and categorized the challenging conditions when DDPC may not work properly and summarized the lessons learned from large-scale DDPC deployment.

Suggested Citation

  • Deng, Zhipeng & Wang, Xuezheng & Jiang, Zixin & Zhou, Nianxin & Ge, Haiwang & Dong, Bing, 2023. "Evaluation of deploying data-driven predictive controls in buildings on a large scale for greenhouse gas emission reduction," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003286
    DOI: 10.1016/j.energy.2023.126934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    3. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    4. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    7. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    8. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    9. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    10. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bünning, Felix & Huber, Benjamin & Schalbetter, Adrian & Aboudonia, Ahmed & Hudoba de Badyn, Mathias & Heer, Philipp & Smith, Roy S. & Lygeros, John, 2022. "Physics-informed linear regression is competitive with two Machine Learning methods in residential building MPC," Applied Energy, Elsevier, vol. 310(C).
    2. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    3. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "Quantum computing for future real-time building HVAC controls," Applied Energy, Elsevier, vol. 334(C).
    5. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
    6. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
    7. Joanna Piotrowska-Woroniak & Tomasz Szul & Krzysztof Cieśliński & Jozef Krilek, 2022. "The Impact of Weather-Forecast-Based Regulation on Energy Savings for Heating in Multi-Family Buildings," Energies, MDPI, vol. 15(19), pages 1-30, October.
    8. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    9. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
    10. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    11. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    12. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Chatzis, Georgios V. & Biskas, Pandelis N. & Keranidis, Stratos D., 2021. "Minimization of natural gas consumption of domestic boilers with convolutional, long-short term memory neural networks and genetic algorithm," Applied Energy, Elsevier, vol. 299(C).
    13. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    14. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    15. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    16. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    17. Jiaxi Luo, 2022. "A Bibliometric Review on Artificial Intelligence for Smart Buildings," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    18. Schreiber, Thomas & Netsch, Christoph & Eschweiler, Sören & Wang, Tianyuan & Storek, Thomas & Baranski, Marc & Müller, Dirk, 2021. "Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system," Energy, Elsevier, vol. 230(C).
    19. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    20. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2021. "Energy Flexibility as Additional Energy Source in Multi-Energy Systems with District Cooling," Energies, MDPI, vol. 14(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.