IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i1p266-d195525.html
   My bibliography  Save this article

The Influence of Insulation Styles on the Building Energy Consumption and Indoor Thermal Comfort of Multi-Family Residences

Author

Listed:
  • Yupeng Wang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710000, China)

  • Hiroatsu Fukuda

    (School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
    Department of Architecture, the University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

The properties of building envelopes significantly affect indoor building energy consumption, indoor thermal comfort, and building durability. In the current standards for Japanese residential energy efficiency, insulation placement is not well regulated. Meanwhile, it is common in Japan to use air-conditioning intermittently, rather than having the units operate continuously. Therefore, considering specific Japanese lifestyles, we investigated insulation performance. In this research, we: (1) developed the interior insulation to include insulation on walls, ceilings and floors of building units (all of the interior surfaces) to achieve building energy savings by avoiding heat loss through thermal bridges; (2) discussed and demonstrated the effects of high heat capacitance for each of the building components and the thermal bridge by conducting building environmental simulations; (3) conducted simulations in seven cities in Japan and discussed the applicability of these different weather conditions; and (4) compared temperature distributions to investigate differences in indoor comfort with partial heating on winter nights. We demonstrated the energy saving and thermal comfort advantages of interior insulation. This research provides an innovative insulation style based on Japanese lifestyles that contributes to new energy-saving standards and formulations.

Suggested Citation

  • Yupeng Wang & Hiroatsu Fukuda, 2019. "The Influence of Insulation Styles on the Building Energy Consumption and Indoor Thermal Comfort of Multi-Family Residences," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:266-:d:195525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jihui Yuan, 2018. "Impact of Insulation Type and Thickness on the Dynamic Thermal Characteristics of an External Wall Structure," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    2. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    3. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    4. Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
    5. Francesco Bianchi & Anna Laura Pisello & Giorgio Baldinelli & Francesco Asdrubali, 2014. "Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup," Sustainability, MDPI, vol. 6(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catarina Ribeiro & Nuno M. M. Ramos & Inês Flores-Colen, 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    2. Uthpala Rathnayake & Denvid Lau & Cheuk Lun Chow, 2020. "Review on Energy and Fire Performance of Water Wall Systems as a Green Building Façade," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    3. You Jin Kwon & Dong Kun Lee, 2019. "Thermal Comfort and Longwave Radiation over Time in Urban Residential Complexes," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    4. Xin Ye & Jun Lu & Tao Zhang & Yupeng Wang & Hiroatsu Fukuda, 2021. "Improvements in Energy Saving and Thermal Environment after Retrofitting with Interior Insulation in Intermittently Cooled Residences in Hot-Summer/Cold-Winter Zone of China: A Case Study in Chengdu," Energies, MDPI, vol. 14(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    2. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    3. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    4. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    5. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    6. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    7. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    8. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    9. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    10. Clune, Stephen & Morrissey, John & Moore, Trivess, 2012. "Size matters: House size and thermal efficiency as policy strategies to reduce net emissions of new developments," Energy Policy, Elsevier, vol. 48(C), pages 657-667.
    11. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    12. Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
    13. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
    14. Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco & Costarelli, Danilo & Rotili, Antonella & Seracini, Marco & Vinti, Gianluca, 2018. "Detection of thermal bridges from thermographic images by means of image processing approximation algorithms," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 160-171.
    15. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    16. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    17. Soukayna Berrabah & Mohamed Ould Moussa & Mohamed Bakhouya, 2021. "3D Modeling of the Thermal Transfer through Precast Buildings Envelopes," Energies, MDPI, vol. 14(13), pages 1-25, June.
    18. Mohamed F. Zedan & Sami Al-Sanea & Abdulaziz Al-Mujahid & Zeyad Al-Suhaibani, 2016. "Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    19. Taniguchi-Matsuoka, Ayako & Shimoda, Yoshiyuki & Sugiyama, Minami & Kurokawa, Yusuke & Matoba, Haruka & Yamasaki, Tomoya & Morikuni, Taro & Yamaguchi, Yohei, 2020. "Evaluating Japan’s national greenhouse gas reduction policy using a bottom-up residential end-use energy simulation model," Applied Energy, Elsevier, vol. 279(C).
    20. Wijaya, Muhammad Ery & Tezuka, Tetsuo, 2013. "Measures for improving the adoption of higher efficiency appliances in Indonesian households: An analysis of lifetime use and decision-making in the purchase of electrical appliances," Applied Energy, Elsevier, vol. 112(C), pages 981-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:266-:d:195525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.