IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2163-d772321.html
   My bibliography  Save this article

Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities

Author

Listed:
  • Muhammad Ali

    (School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia)

  • Krishneel Prakash

    (School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia)

  • Carlos Macana

    (School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia)

  • Ali Kashif Bashir

    (Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M15 6BH, UK)

  • Alireza Jolfaei

    (Department of Computing, Macquarie University, Sydney 2113, Australia)

  • Awais Bokhari

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 61669 Brno, Czech Republic)

  • Jiří Jaromír Klemeš

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology—VUT Brno, Technická 2896/2, 61669 Brno, Czech Republic)

  • Hemanshu Pota

    (School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia)

Abstract

Demographic factors, statistical information, and technological innovation are prominent factors shaping energy transitions in the residential sector. Explaining these energy transitions requires combining insights from the disciplines investigating these factors. The existing literature is not consistent in identifying these factors, nor in proposing how they can be combined. In this paper, three contributions are made by combining the key demographic factors of households to estimate household energy consumption. Firstly, a mathematical formula is developed by considering the demographic determinants that influence energy consumption, such as the number of persons per household, median age, occupancy rate, households with children, and number of bedrooms per household. Secondly, a geographical position algorithm is proposed to identify the geographical locations of households. Thirdly, the derived formula is validated by collecting demographic factors of five statistical regions from local government databases, and then compared with the electricity consumption benchmarks provided by the energy regulators. The practical feasibility of the method is demonstrated by comparing the estimated energy consumption values with the electricity consumption benchmarks provided by energy regulators. The comparison results indicate that the error between the benchmark and estimated values for the five different regions is less than 8% (7.37%), proving the efficacy of this method in energy consumption estimation processes.

Suggested Citation

  • Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2163-:d:772321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    2. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    3. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    4. Liu, Yang & Wang, Wei & Ghadimi, Noradin, 2017. "Electricity load forecasting by an improved forecast engine for building level consumers," Energy, Elsevier, vol. 139(C), pages 18-30.
    5. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
    6. Narayan, Paresh Kumar & Smyth, Russell, 2005. "The residential demand for electricity in Australia: an application of the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 33(4), pages 467-474, March.
    7. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    8. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    9. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    10. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Nivine Attoue & Isam Shahrour & Rafic Younes, 2018. "Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting," Energies, MDPI, vol. 11(2), pages 1-12, February.
    12. Xu, Guangyue & Wang, Weimin, 2020. "China’s energy consumption in construction and building sectors: An outlook to 2100," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    2. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).
    3. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    4. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    5. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    6. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    7. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    8. Xing, Yazhou & Zhang, Su & Wen, Peng & Shao, Limin & Rouyendegh, Babak Daneshvar, 2020. "Load prediction in short-term implementing the multivariate quantile regression," Energy, Elsevier, vol. 196(C).
    9. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    10. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Zhou, Cheng & Chen, Xiyang, 2019. "Predicting energy consumption: A multiple decomposition-ensemble approach," Energy, Elsevier, vol. 189(C).
    12. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    13. Khan, Noman & Khan, Samee Ullah & Baik, Sung Wook, 2023. "Deep dive into hybrid networks: A comparative study and novel architecture for efficient power prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
    15. R. Santos Alimi, 2014. "ARDL Bounds Testing Approach to Cointegration: A Re-Examination of Augmented Fisher Hypothesis in an Open Economy," Asian Journal of Economic Modelling, Asian Economic and Social Society, vol. 2(2), pages 103-114, June.
    16. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    17. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    18. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    19. Laura Panza, 2012. "Globalisation and the Ottoman Empire: A study of integration between Ottoman and world cotton markets," Working Papers 2012.01, School of Economics, La Trobe University.
    20. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2163-:d:772321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.