IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8946-d611711.html
   My bibliography  Save this article

Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study

Author

Listed:
  • Frauke Behrendt

    (Technology, Innovation and Society Group (TIS), Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, Atlas 5.402, P.O. Box 513, 5600 MB Eindhoven, The Netherlands)

  • Sally Cairns

    (Institute for Transport Studies, University of Leeds, 34-40 University Road, Leeds LS2 9JT, UK)

  • David Raffo

    (Department of Art and Design, University of Chester, Creative Campus, Kingsway, Chester CH2 2LB, UK)

  • Ian Philips

    (Institute for Transport Studies, University of Leeds, 34-40 University Road, Leeds LS2 9JT, UK)

Abstract

Electrically-assisted cycling can make a major contribution to sustainable mobility. For some people, hills are a barrier for cycling. This paper focuses on how and why electrically-assisted bikes make a difference to cycling in hilly contexts, and can thus be an important element of sustainable mobility in hilly geographies. It makes a novel contribution in being able to draw on recorded sensor data of the actual use of assistance in relation to the specific geography of the route cycled (GPS data), and interview/survey material. It shows that e-bikes extend the range, nature and scope of journeys manageable by bike, and therefore the general viability of e-bikes as alternative to other modes. It highlights that the benefits of using e-bikes are often also psychological, since they can change the overall enjoyability of the cycling experience in hilly areas. Resulting policy recommendations, that could lead to significant CO 2 savings through the uptake of e-cycling in hilly contexts, include ‘try before you buy’ schemes, training for e-bike users and investing in relevant cycling infrastructure.

Suggested Citation

  • Frauke Behrendt & Sally Cairns & David Raffo & Ian Philips, 2021. "Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8946-:d:611711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    2. Leger, Samantha J. & Dean, Jennifer L. & Edge, Sara & Casello, Jeffrey M., 2019. "“If I had a regular bicycle, I wouldn’t be out riding anymore”: Perspectives on the potential of e-bikes to support active living and independent mobility among older adults in Waterloo, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 240-254.
    3. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    4. Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
    5. Parkin, John & Rotheram, Jonathon, 2010. "Design speeds and acceleration characteristics of bicycle traffic for use in planning, design and appraisal," Transport Policy, Elsevier, vol. 17(5), pages 335-341, September.
    6. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    7. Bucher, Dominik & Buffat, René & Froemelt, Andreas & Raubal, Martin, 2019. "Energy and greenhouse gas emission reduction potentials resulting from different commuter electric bicycle adoption scenarios in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungwon Lee & Devon Farmer & Jooyoung Kim & Hyun Kim, 2022. "Shared Autonomous Vehicles Competing with Shared Electric Bicycles: A Stated-Preference Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    2. Maren Schnieder, 2023. "Ebike Sharing vs. Bike Sharing: Demand Prediction Using Deep Neural Networks and Random Forests," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    3. Ovidiu R. Ciascai & Ștefan Dezsi & Karina A. Rus, 2022. "Cycling Tourism: A Literature Review to Assess Implications, Multiple Impacts, Vulnerabilities, and Future Perspectives," Sustainability, MDPI, vol. 14(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    2. Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
    3. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    4. Zuo, Ting & Wei, Heng, 2019. "Bikeway prioritization to increase bicycle network connectivity and bicycle-transit connection: A multi-criteria decision analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 52-71.
    5. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    6. Lopes, Miguel & Mélice Dias, Ana & Silva, Cecília, 2021. "The impact of urban features in cycling potential – A tale of Portuguese cities," Journal of Transport Geography, Elsevier, vol. 95(C).
    7. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    8. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    9. Yan Wang & Yibin Ao & Yuting Zhang & Yan Liu & Lei Zhao & Yunfeng Chen, 2019. "Impact of the Built Environment and Bicycling Psychological Factors on the Acceptable Bicycling Distance of Rural Residents," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    10. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," LSE Research Online Documents on Economics 120310, London School of Economics and Political Science, LSE Library.
    11. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.
    12. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    13. Bram Boettge & Damon M. Hall & Thomas Crawford, 2017. "Assessing the Bicycle Network in St. Louis: A PlaceBased User-Centered Approach," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    14. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    15. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Michael Hardinghaus & Simon Nieland & Marius Lehne & Jan Weschke, 2021. "More than Bike Lanes—A Multifactorial Index of Urban Bikeability," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    17. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    18. Ma, Liang & Ettema, Dick & Ye, Runing, 2021. "Determinants of bicycling for transportation in disadvantaged neighbourhoods: Evidence from Xi’an, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 103-117.
    19. Mogens Fosgerau & Miroslawa Lukawska & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2022. "Bikeability and the induced demand for cycling," Papers 2210.02504, arXiv.org, revised Dec 2022.
    20. Gen Hayauchi & Ryo Ariyoshi & Takayuki Morikawa & Fumihiko Nakamura, 2023. "Assessment of the Improvement of Public Transport in Hillside Cities Considering the Impact of Topography on Walking Choices," Sustainability, MDPI, vol. 15(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8946-:d:611711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.