IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v103y2017icp327-342.html
   My bibliography  Save this article

Electrically-assisted bikes: Potential impacts on travel behaviour

Author

Listed:
  • Cairns, S.
  • Behrendt, F.
  • Raffo, D.
  • Beaumont, C.
  • Kiefer, C.

Abstract

This paper reports on a review of the European literature about the impacts of having an electrically-assisted bike available to use, together with results from a trial in the UK city of Brighton, where 80 employees were loaned an electrically-assisted bike for a 6–8week period. In the Brighton trial, three-quarters of those who were loaned an e-bike used them at least once a week. Across the sample as a whole, average usage was in the order of 15–20miles per week, and was accompanied by an overall reduction in car mileage of 20%. At the end of the trial, 38% participants expected to cycle more in the future, and at least 70% said that they would like to have an e-bike available for use in the future, and would cycle more if this was the case. This is consistent with the results of the European literature which shows that when e-bikes are made available, they get used; that a proportion of e-bike trips typically substitutes for car use; and that many people who take part in trials become interested in future e-bike use, or cycling more generally.

Suggested Citation

  • Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
  • Handle: RePEc:eee:transa:v:103:y:2017:i:c:p:327-342
    DOI: 10.1016/j.tra.2017.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415301865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherry, Christopher & Cervero, Robert, 2007. "Use characteristics and mode choice behavior of electric bike users in China," Transport Policy, Elsevier, vol. 14(3), pages 247-257, May.
    2. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    3. Behrendt, Frauke, 2016. "Why cycling matters for Smart Cities. Internet of Bicycles for Intelligent Transport," Journal of Transport Geography, Elsevier, vol. 56(C), pages 157-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayanan, Santhanakrishnan & Antoniou, Constantinos, 2022. "Electric cargo cycles - A comprehensive review," Transport Policy, Elsevier, vol. 116(C), pages 278-303.
    2. Pettifor, Hazel & Wilson, Charlie, 2020. "Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Ragnhild Dahl Wikstrøm & Lars Böcker, 2020. "Changing Suburban Daily Mobilities in Response to a Mobility Intervention: A Qualitative Investigation of an E-bike Trial," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    4. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    5. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    6. Ton, Danique & Duives, Dorine, 2021. "Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials," Transport Policy, Elsevier, vol. 105(C), pages 134-144.
    7. Paul Plazier & Gerd Weitkamp & Agnes van den Berg, 2023. "E-bikes in rural areas: current and potential users in the Netherlands," Transportation, Springer, vol. 50(4), pages 1449-1470, August.
    8. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    9. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    10. Lurdes Jesus Ferreira & Jieling Liu, 2023. "Social Determinants, Motivation, and Communication: How People Perceive and Choose Sustainable Mobility at a Local Level in Portugal," Sustainability, MDPI, vol. 15(18), pages 1, September.
    11. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    12. Michał Adam Kwiatkowski & Elżbieta Grzelak-Kostulska & Jadwiga Biegańska, 2021. "Could It Be a Bike for Everyone? The Electric Bicycle in Poland," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. Jenkins, Michael & Lustosa, Lucio & Chia, Victoria & Wildish, Sarah & Tan, Maria & Hoornweg, Daniel & Lloyd, Meghann & Dogra, Shilpa, 2022. "What do we know about pedal assist E-bikes? A scoping review to inform future directions," Transport Policy, Elsevier, vol. 128(C), pages 25-37.
    14. Ba Hung, Nguyen & Lim, Ocktaeck, 2019. "The effects of operating conditions and structural parameters on the dynamic, electric consumption and power generation characteristics of an electric assisted bicycle," Applied Energy, Elsevier, vol. 247(C), pages 285-296.
    15. Frauke Behrendt & Sally Cairns & David Raffo & Ian Philips, 2021. "Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    16. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Gihan Ekanayake & Mahesh Suresh Patil & Jae-Hyeong Seo & Moo-Yeon Lee, 2018. "Numerical Study on Heat Transfer Characteristics of the 36V Electronic Control Unit System for an Electric Bicycle," Energies, MDPI, vol. 11(10), pages 1-17, September.
    18. Jelle Van Cauwenberg & Ilse De Bourdeaudhuij & Peter Clarys & Bas de Geus & Benedicte Deforche, 2019. "E-bikes among older adults: benefits, disadvantages, usage and crash characteristics," Transportation, Springer, vol. 46(6), pages 2151-2172, December.
    19. Genikomsakis, Konstantinos N. & Galatoulas, Nikolaos-Fivos & Ioakimidis, Christos S., 2021. "Towards the development of a hotel-based e-bike rental service: Results from a stated preference survey and techno-economic analysis," Energy, Elsevier, vol. 215(PA).
    20. Wojciech Keblowski & Frédéric Dobruszkes & Kobe Boussauw, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," ULB Institutional Repository 2013/341191, ULB -- Universite Libre de Bruxelles.
    21. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    22. Li, Qiumeng & Fuerst, Franz & Luca, Davide, 2023. "Do shared E-bikes reduce urban carbon emissions?," LSE Research Online Documents on Economics 120310, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    2. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    3. Thomas, Alainna, 2016. "A More Sustainable Minivan? An Exploratory Study of Electric Bicycle Use by San Francisco Bay Area Families," Institute of Transportation Studies, Working Paper Series qt6g79m3xx, Institute of Transportation Studies, UC Davis.
    4. Elliot Fishman & Christopher Cherry, 2016. "E-bikes in the Mainstream: Reviewing a Decade of Research," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 72-91, January.
    5. Nematchoua, ModesteKameni & Deuse, Caroline & Cools, Mario & Reiter, Sigrid, 2020. "Evaluation of the potential of classic and electric bicycle commuting as an impetus for the transition towards environmentally sustainable cities: A case study of the university campuses in Liege, Bel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Mathijs Haas & Maarten Kroesen & Caspar Chorus & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2022. "E-bike user groups and substitution effects: evidence from longitudinal travel data in the Netherlands," Transportation, Springer, vol. 49(3), pages 815-840, June.
    7. Genikomsakis, Konstantinos N. & Galatoulas, Nikolaos-Fivos & Ioakimidis, Christos S., 2021. "Towards the development of a hotel-based e-bike rental service: Results from a stated preference survey and techno-economic analysis," Energy, Elsevier, vol. 215(PA).
    8. Yide Liu & Ivan Ka Wai Lai, 2020. "The Effects of Environmental Policy and the Perception of Electric Motorcycles on the Acceptance of Electric Motorcycles: An Empirical Study in Macau," SAGE Open, , vol. 10(1), pages 21582440198, January.
    9. Esther Salmeron-Manzano & Francisco Manzano-Agugliaro, 2018. "The Electric Bicycle: Worldwide Research Trends," Energies, MDPI, vol. 11(7), pages 1-16, July.
    10. Steve O’Hern & Nora Estgfaeller, 2020. "A Scientometric Review of Powered Micromobility," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    11. Lin, Xiao & Wells, Peter & Sovacool, Benjamin K., 2017. "Benign mobility? Electric bicycles, sustainable transport consumption behaviour and socio-technical transitions in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 223-234.
    12. Xingchen Yan & Tao Wang & Xiaofei Ye & Jun Chen & Zhen Yang & Hua Bai, 2018. "Recommended Widths for Separated Bicycle Lanes Considering Abreast Riding and Overtaking," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    13. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    14. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    15. Ton, Danique & Duives, Dorine, 2021. "Understanding long-term changes in commuter mode use of a pilot featuring free e-bike trials," Transport Policy, Elsevier, vol. 105(C), pages 134-144.
    16. Sebastian Kussl & Andreas Wald, 2022. "Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    17. Gruber Johannes & Rudolph Christian & Kolarova Viktoriya, 2015. "Einflussfaktoren bei der Einführung des Lastenrads im urbanen Wirtschaftsverkehr," ZFW – Advances in Economic Geography, De Gruyter, vol. 59(1), pages 115-129, October.
    18. Mário Meireles & Paulo J. G. Ribeiro, 2020. "Digital Platform/Mobile App to Boost Cycling for the Promotion of Sustainable Mobility in Mid-Sized Starter Cycling Cities," Sustainability, MDPI, vol. 12(5), pages 1-27, March.
    19. Zhibin Li & Wei Wang & Chen Yang & Haoyang Ding, 2017. "Bicycle mode share in China: a city-level analysis of long term trends," Transportation, Springer, vol. 44(4), pages 773-788, July.
    20. Thanh Tung Ha & Thanh Chuong Nguyen & Sy Sua Tu & Minh Hieu Nguyen, 2023. "Investigation of Influential Factors of Intention to Adopt Electric Vehicles for Motorcyclists in Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:103:y:2017:i:c:p:327-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.