IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7232-d584034.html
   My bibliography  Save this article

A Techno-Economic Evaluation of Municipal Solid Waste (MSW) Conversion to Energy in Indonesia

Author

Listed:
  • Muhammad Mufti Azis

    (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Jonas Kristanto

    (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Chandra Wahyu Purnomo

    (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Agro-Technology Innovation Center, Universitas Gadjah Mada, Kalitirto, Berbah, Sleman, Yogyakarta 55573, Indonesia)

Abstract

Municipal solid waste (MSW) processing is still problematic in Indonesia. From the hierarchy of waste management, it is clear that energy recovery from waste could be an option after prevention and the 5R (rethink, refuse, reduce, reuse, recycle) processes. The Presidential Regulation No 35/2018 mandated the acceleration of waste-to-energy (WtE) plant adoption in Indonesia. The present study aimed to demonstrate a techno-economic evaluation of a commercial WtE plant in Indonesia by processing 1000 tons of waste/day to produce ca. 19.7 MW of electricity. The WtE electricity price is set at USD 13.35 cent/kWh, which is already higher than the average household price at USD 9.76 cent/kWh. The capital investment is estimated at USD 102.2 million. The annual operational cost is estimated at USD 12.1 million and the annual revenue at USD 41.6 million. At this value, the internal rate of return (IRR) for the WtE plant is 25.32% with a payout time (PoT) of 3.47 years. In addition, this study also takes into account electricity price sales, tipping fee, and pretreatment cost of waste. The result of a sensitivity analysis showed that the electricity price was the most sensitive factor. This study reveals that it is important to maintain a regulated electricity price to ensure the sustainability of the WtE plant in Indonesia.

Suggested Citation

  • Muhammad Mufti Azis & Jonas Kristanto & Chandra Wahyu Purnomo, 2021. "A Techno-Economic Evaluation of Municipal Solid Waste (MSW) Conversion to Energy in Indonesia," Sustainability, MDPI, vol. 13(13), pages 1-10, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7232-:d:584034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    2. Tribe, M. A. & Alpine, R. L. W., 1986. "Scale economies and the "0.6 rule"," Engineering Costs and Production Economics, Elsevier, vol. 10(4), pages 271-278, March.
    3. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoxian Cao & Chaoyang Guo & Hezhong Li, 2022. "Risk Analysis of Public–Private Partnership Waste-to-Energy Incineration Projects from the Perspective of Rural Revitalization," Sustainability, MDPI, vol. 14(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    2. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Ihsanullah Sohoo & Marco Ritzkowski & Kerstin Kuchta & Senem Önen Cinar, 2020. "Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    4. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    5. Bradley, James R., 2005. "Optimal control of a dual service rate M/M/1 production-inventory model," European Journal of Operational Research, Elsevier, vol. 161(3), pages 812-837, March.
    6. Colacchio, Giorgio & Forges Davanzati, Guglielmo, 2017. "Endogenous money, increasing returns and economic growth: Nicholas Kaldor’s contribution," Structural Change and Economic Dynamics, Elsevier, vol. 41(C), pages 79-85.
    7. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    8. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    9. Kuznetsova, Elizaveta & Cardin, Michel-Alexandre & Diao, Mingzhen & Zhang, Sizhe, 2019. "Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 477-500.
    10. Alcorta, Ludovico, 1995. "New Technologies, Scale and Scope, and Location of Production in Developing Countries," UNU-INTECH Discussion Paper Series 1995-02, United Nations University - INTECH.
    11. Donald Ukpanyang & Julio Terrados-Cepeda & Manuel Jesus Hermoso-Orzaez, 2022. "Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria," Energies, MDPI, vol. 15(10), pages 1-26, May.
    12. Abdulrahman Abdeljaber & Rawan Zannerni & Wedad Masoud & Mohamed Abdallah & Lisandra Rocha-Meneses, 2022. "Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    13. G.-Fivos Sargentis & Theano Iliopoulou & Stavroula Sigourou & Panayiotis Dimitriadis & Demetris Koutsoyiannis, 2020. "Evolution of Clustering Quantified by a Stochastic Method—Case Studies on Natural and Human Social Structures," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    14. Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
    15. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    16. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    17. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    18. Muhammad Nawaz & Muhammad Tariq Yousafzai & Salim Khan & Wisal Ahmad & Muhammad Salman & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Assessing the Formal and Informal Waste Recycling Business Processes through a Stakeholders Lens in Pakistan," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    19. Longsheng, Cheng & Ali Shah, Syed Ahsan & Solangi, Yasir Ahmed & Ahmad, Munir & Ali, Sharafat, 2022. "An integrated SWOT-multi-criteria analysis of implementing sustainable waste-to-energy in Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 1438-1453.
    20. Alexey Paukov & Romen Magaril & Elena Magaril, 2019. "An Investigation of the Feasibility of the Organic Municipal Solid Waste Processing by Coking," Sustainability, MDPI, vol. 11(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7232-:d:584034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.