IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7119-d581768.html
   My bibliography  Save this article

Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources

Author

Listed:
  • Abbas Rabiee

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Ali Abdali

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

  • Seyed Masoud Mohseni-Bonab

    (Digital Systems Department, Hydro-Québec/IREQ, Varennes, QC J3X 1S1, Canada)

  • Mohsen Hazrati

    (Department of Electrical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45371-38791, Iran)

Abstract

In this paper, a robust scheduling model is proposed for combined heat and power (CHP)-based microgrids using information gap decision theory (IGDT). The microgrid under study consists of conventional power generation as well as boiler units, fuel cells, CHPs, wind turbines, solar PVs, heat storage units, and battery energy storage systems (BESS) as the set of distributed energy resources (DERs). Additionally, a demand response program (DRP) model is considered which has a successful performance in the microgrid hourly scheduling. One of the goals of CHP-based microgrid scheduling is to provide both thermal and electrical energy demands of the consumers. Additionally, the other objective is to benefit from the revenues obtained by selling the surplus electricity to the main grid during the high energy price intervals or purchasing it from the grid when the price of electricity is low at the electric market. Hence, in this paper, a robust scheduling approach is developed with the aim of maximizing the total profit of different energy suppliers in the entire scheduling horizon. The employed IGDT technique aims to handle the impact of uncertainties in the power output of wind and solar PV units on the overall profit.

Suggested Citation

  • Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7119-:d:581768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    2. Younès Dagdougui & Ahmed Ouammi & Rachid Benchrifa, 2020. "Energy Management-Based Predictive Controller for a Smart Building Powered by Renewable Energy," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    3. Yongli Wang & Yujing Huang & Yudong Wang & Fang Li & Yuanyuan Zhang & Chunzheng Tian, 2018. "Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response," Sustainability, MDPI, vol. 10(3), pages 1-25, March.
    4. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    5. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    6. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    7. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    8. Jianzhou Wang & Chunying Wu & Tong Niu, 2019. "A Novel System for Wind Speed Forecasting Based on Multi-Objective Optimization and Echo State Network," Sustainability, MDPI, vol. 11(2), pages 1-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikzad, Mehdi, 2025. "Risk-averse stochastic multi-objective optimization for time-of-use demand response pricing in smart microgrids," Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    2. Lumin Shi & Man-Wen Tian & As’ad Alizadeh & Ardashir Mohammadzadeh & Sayyad Nojavan, 2023. "Information Gap Decision Theory-Based Risk-Averse Scheduling of a Combined Heat and Power Hybrid Energy System," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Taewook Kang, 2020. "BIM-Based Human Machine Interface (HMI) Framework for Energy Management," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    5. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    6. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    7. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
    8. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    9. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    11. Kools, L. & Phillipson, F., 2016. "Data granularity and the optimal planning of distributed generation," Energy, Elsevier, vol. 112(C), pages 342-352.
    12. Nagaraju Dharavat & Suresh Kumar Sudabattula & Suresh Velamuri & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Elmazeg Elgamli & Mokhtar Shouran & Salah Kamel, 2022. "Optimal Allocation of Renewable Distributed Generators and Electric Vehicles in a Distribution System Using the Political Optimization Algorithm," Energies, MDPI, vol. 15(18), pages 1-25, September.
    13. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    14. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    15. Xinghan Xu & Weijie Ren, 2019. "Application of a Hybrid Model Based on Echo State Network and Improved Particle Swarm Optimization in PM 2.5 Concentration Forecasting: A Case Study of Beijing, China," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    16. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    17. Elnaz Davoodi & Salar Balaei-Sani & Behnam Mohammadi-Ivatloo & Mehdi Abapour, 2021. "Flexible Continuous-Time Modeling for Multi-Objective Day-Ahead Scheduling of CHP Units," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    18. David García Elvira & Hugo Valderrama Blaví & Àngel Cid Pastor & Luis Martínez Salamero, 2018. "Efficiency Optimization of a Variable Bus Voltage DC Microgrid," Energies, MDPI, vol. 11(11), pages 1-21, November.
    19. Wang, Meng & Zheng, J.H. & Li, Zhigang & Wu, Q.H., 2022. "Multi-attribute decision analysis for optimal design of park-level integrated energy systems based on load characteristics," Energy, Elsevier, vol. 254(PA).
    20. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2020. "Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid," Sustainability, MDPI, vol. 12(9), pages 1-25, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7119-:d:581768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.