IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225013751.html
   My bibliography  Save this article

Risk-averse stochastic multi-objective optimization for time-of-use demand response pricing in smart microgrids

Author

Listed:
  • Nikzad, Mehdi

Abstract

This paper presents a multi-objective optimization approach for the pricing of a time-of-use (TOU) demand response program in a smart microgrid (MG), addressing the perspectives of the MG operator, aggregators, and clients. The MG operator's objective is to maximize profit by balancing production costs and revenue, which varies with the implementation of TOU, while minimizing bonuses paid to aggregators. The aggregators aim to maximize the bonus received from the MG operator while minimizing both the compensation paid to clients for aligning their consumption with renewable generation and the discomfort experienced by clients. Clients seek to maximize their compensation while minimizing discomfort caused by adjusting their consumption patterns. The model includes uncertain parameters like solar radiation, wind speed, and load demand, characterized by probability density functions (PDFs) to generate scenarios, with backward scenario reduction technique used to manage computational complexity. The multi-objective optimization problem is modeled stochastically and solved using the Normal Boundary Intersection (NBI) method, with the Conditional Value at Risk (CVaR) index integrated to account for a risk-averse perspective.

Suggested Citation

  • Nikzad, Mehdi, 2025. "Risk-averse stochastic multi-objective optimization for time-of-use demand response pricing in smart microgrids," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013751
    DOI: 10.1016/j.energy.2025.135733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225013751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Khalili, Reza & Khaledi, Arian & Marzband, Mousa & Nematollahi, Amin Foroughi & Vahidi, Behrooz & Siano, Pierluigi, 2023. "Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs," Applied Energy, Elsevier, vol. 334(C).
    3. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    4. Yongqi Zhao & Jiajia Chen, 2021. "A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage," Energies, MDPI, vol. 14(9), pages 1-17, May.
    5. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    6. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    7. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    8. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    9. Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    2. João Soares & Nuno Borges & Zita Vale & P.B. De Moura Oliveira, 2016. "Enhanced Multi-Objective Energy Optimization by a Signaling Method," Energies, MDPI, vol. 9(10), pages 1-23, October.
    3. Dhafer M. Dahis & Seyed Saeedallah Mortazavi & Mahmood Joorabian & Alireza Saffarian, 2025. "Bi-Level Resilience-Oriented Sitting and Sizing of Energy Hubs in Electrical, Thermal and Gas Networks Considering Energy Management System," Energies, MDPI, vol. 18(10), pages 1-26, May.
    4. Li, Ling-Ling & Ji, Bing-Xiang & Liu, Guan-Chen & Yuan, Jian-Ping & Tseng, Shuan-Wei & Lim, Ming K. & Tseng, Ming-Lang, 2024. "Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm," Energy, Elsevier, vol. 294(C).
    5. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    6. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    7. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
    8. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    9. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    10. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    11. Mohammed Abdullah H. Alshehri & Youguang Guo & Gang Lei, 2023. "Energy Management Strategies of Grid-Connected Microgrids under Different Reliability Conditions," Energies, MDPI, vol. 16(9), pages 1-22, May.
    12. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    13. Xueying Song & Hongyu Lin & Gejirifu De & Hanfang Li & Xiaoxu Fu & Zhongfu Tan, 2020. "An Energy Optimal Dispatching Model of an Integrated Energy System Based on Uncertain Bilevel Programming," Energies, MDPI, vol. 13(2), pages 1-24, January.
    14. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    16. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    17. Maria Grazia Marchesano & Guido Guizzi & Silvestro Vespoli & Gabriella Ferruzzi, 2023. "Battery Swapping Station Service in a Smart Microgrid: A Multi-Method Simulation Performance Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    18. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    19. Xiaofeng Liu & Qi Wang & Wenting Wang, 2019. "Evolutionary Analysis for Residential Consumer Participating in Demand Response Considering Irrational Behavior," Energies, MDPI, vol. 12(19), pages 1-19, September.
    20. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.