IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p807-d80087.html
   My bibliography  Save this article

Enhanced Multi-Objective Energy Optimization by a Signaling Method

Author

Listed:
  • João Soares

    (GECAD, Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal)

  • Nuno Borges

    (GECAD, Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal)

  • Zita Vale

    (GECAD, Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal)

  • P.B. De Moura Oliveira

    (INESC Technology and Science, UTAD University, Quinta de Prados, Vila Real 5000-801, Portugal)

Abstract

In this paper three metaheuristics are used to solve a smart grid multi-objective energy management problem with conflictive design: how to maximize profits and minimize carbon dioxide (CO 2 ) emissions, and the results compared. The metaheuristics implemented are: weighted particle swarm optimization (W-PSO), multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II). The performance of these methods with the use of multi-dimensional signaling is also compared with this technique, which has previously been shown to boost metaheuristics performance for single-objective problems. Hence, multi-dimensional signaling is adapted and implemented here for the proposed multi-objective problem. In addition, parallel computing is used to mitigate the methods’ computational execution time. To validate the proposed techniques, a realistic case study for a chosen area of the northern region of Portugal is considered, namely part of Vila Real distribution grid (233-bus). It is assumed that this grid is managed by an energy aggregator entity, with reasonable amount of electric vehicles (EVs), several distributed generation (DG), customers with demand response (DR) contracts and energy storage systems (ESS). The considered case study characteristics took into account several reported research works with projections for 2020 and 2050. The findings strongly suggest that the signaling method clearly improves the results and the Pareto front region quality.

Suggested Citation

  • João Soares & Nuno Borges & Zita Vale & P.B. De Moura Oliveira, 2016. "Enhanced Multi-Objective Energy Optimization by a Signaling Method," Energies, MDPI, vol. 9(10), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:807-:d:80087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. João Soares & Bruno Canizes & Cristina Lobo & Zita Vale & Hugo Morais, 2012. "Electric Vehicle Scenario Simulator Tool for Smart Grid Operators," Energies, MDPI, vol. 5(6), pages 1-19, June.
    3. Fotouhi Ghazvini, Mohammad Ali & Soares, João & Horta, Nuno & Neves, Rui & Castro, Rui & Vale, Zita, 2015. "A multi-objective model for scheduling of short-term incentive-based demand response programs offered by electricity retailers," Applied Energy, Elsevier, vol. 151(C), pages 102-118.
    4. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    5. Pedro Faria & Zita Vale & José Baptista, 2015. "Demand Response Programs Design and Use Considering Intensive Penetration of Distributed Generation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    6. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    7. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    8. Motevasel, Mehdi & Seifi, Ali Reza & Niknam, Taher, 2013. "Multi-objective energy management of CHP (combined heat and power)-based micro-grid," Energy, Elsevier, vol. 51(C), pages 123-136.
    9. Vivien Foster & Daron Bedrosyan, 2014. "Understanding CO2 Emissions from the Global Energy Sector," World Bank Publications - Reports 17143, The World Bank Group.
    10. Soares, João & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads," Applied Energy, Elsevier, vol. 162(C), pages 1074-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    2. Giuseppe Barone & Giovanni Brusco & Alessandro Burgio & Daniele Menniti & Anna Pinnarelli & Michele Motta & Nicola Sorrentino & Pasquale Vizza, 2018. "A Real-Life Application of a Smart User Network," Energies, MDPI, vol. 11(12), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    2. Soares, João & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads," Applied Energy, Elsevier, vol. 162(C), pages 1074-1088.
    3. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    4. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    5. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    6. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    7. Deihimi, Ali & Keshavarz Zahed, Babak & Iravani, Reza, 2016. "An interactive operation management of a micro-grid with multiple distributed generations using multi-objective uniform water cycle algorithm," Energy, Elsevier, vol. 106(C), pages 482-509.
    8. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    9. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    11. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    12. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    13. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    14. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    15. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    16. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh, 2018. "A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids," Energy, Elsevier, vol. 149(C), pages 135-146.
    17. Ying Yu & Tongdan Jin & Chunjie Zhong, 2015. "Designing an Incentive Contract Menu for Sustaining the Electricity Market," Energies, MDPI, vol. 8(12), pages 1-22, December.
    18. Geng, Zhaowei & Conejo, Antonio J. & Chen, Qixin & Xia, Qing & Kang, Chongqing, 2017. "Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production," Applied Energy, Elsevier, vol. 193(C), pages 540-549.
    19. Da Xie & Yupu Lu & Junbo Sun & Chenghong Gu & Jilai Yu, 2016. "Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization," Energies, MDPI, vol. 9(6), pages 1-17, June.
    20. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:807-:d:80087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.