IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6864-d576900.html
   My bibliography  Save this article

Process Design Guided by Life Cycle Assessment to Reduce Greenhouse Gas-Related Environmental Impacts of Food Processing

Author

Listed:
  • Dion M. F. Frampton

    (CSIRO Oceans and Atmosphere, Hobart 7000, Australia)

  • Nawshad Haque

    (CSIRO Energy, Melbourne 3168, Australia)

  • David I. Verrelli

    (Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia
    Department of Physics and Astronomy, Macquarie University, Sydney 2109, Australia)

  • Geoff J. Dumsday

    (CSIRO Manufacturing, Melbourne 3168, Australia)

  • Kim Jye Lee-Chang

    (CSIRO Oceans and Atmosphere, Hobart 7000, Australia)

Abstract

Food processing can generate large amounts of carbohydrate-rich waste that inevitably has environmental and social impacts. Meanwhile, certain heterotrophic marine microorganisms, including algae and thraustochytrids, have the potential to convert carbohydrate-rich substrates into oil-rich biomass over relatively short time frames. To assess the merits of this apparent synergy, an initial conceptual process was developed based on the use of raw potato processing waste as feed in an algal bioreactor to produce bio-oil for further use within the food industry. A practical flowsheet was established with a conventional 200 kL bioreactor whereby the unit processes were identified, the mass balance developed, and estimates made of the various material and energy demands. These inputs were used to develop a baseline life cycle assessment (LCA) model and to identify opportunities for reducing environmental impacts. With the functional unit (FU) being 1 tonne cooking oil, the baseline configuration had a greenhouse gas (GHG) footprint of 2.4 t CO 2 -e/FU, which is comparable to conventional process routes. More detailed LCA revealed that electricity for stirring the bioreactor contributed approximately 78% of the total GHG footprint. By adjusting the operating conditions, the most promising scenario produced 0.85 t CO 2 -e/FU—approximately four times less than the conventional process—and shows the potential advantages of applying LCA as a tool to develop and design a new production process.

Suggested Citation

  • Dion M. F. Frampton & Nawshad Haque & David I. Verrelli & Geoff J. Dumsday & Kim Jye Lee-Chang, 2021. "Process Design Guided by Life Cycle Assessment to Reduce Greenhouse Gas-Related Environmental Impacts of Food Processing," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6864-:d:576900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrik Mouron & Christian Willersinn & Sabrina Möbius & Jens Lansche, 2016. "Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    2. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    3. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    4. Sandeep Jagtap & Chintan Bhatt & Jaydeep Thik & Shahin Rahimifard, 2019. "Monitoring Potato Waste in Food Manufacturing Using Image Processing and Internet of Things Approach," Sustainability, MDPI, vol. 11(11), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    4. Yujie Xiao & Shuai Yang, 2016. "The Retail Chain Design for Perishable Food: The Case of Price Strategy and Shelf Space Allocation," Sustainability, MDPI, vol. 9(1), pages 1-11, December.
    5. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    6. Sandeep Jagtap & George Skouteris & Vilendra Choudhari & Shahin Rahimifard & Linh Nguyen Khanh Duong, 2021. "An Internet of Things Approach for Water Efficiency: A Case Study of the Beverage Factory," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    7. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    8. Hana Trollman & Guillermo Garcia-Garcia & Sandeep Jagtap & Frank Trollman, 2022. "Blockchain for Ecologically Embedded Coffee Supply Chains," Logistics, MDPI, vol. 6(3), pages 1-17, June.
    9. Benedetta Esposito & Maria Rosaria Sessa & Daniela Sica & Ornella Malandrino, 2020. "Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    10. Tamíris Pacheco da Costa & James Gillespie & Katarzyna Pelc & Abi Adefisan & Michael Adefisan & Ramakrishnan Ramanathan & Fionnuala Murphy, 2022. "Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    11. Barbera, Elena & Sforza, Eleonora & Vecchiato, Luca & Bertucco, Alberto, 2017. "Energy and economic analysis of microalgae cultivation in a photovoltaic-assisted greenhouse: Scenedesmus obliquus as a case study," Energy, Elsevier, vol. 140(P1), pages 116-124.
    12. Hamideh Hamedi & Giovanna Gonzales-Calienes & Jalil Shadbahr, 2025. "Ex Situ Carbon Mineralization for CO 2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review," Clean Technol., MDPI, vol. 7(2), pages 1-37, May.
    13. Zhu, Liandong & Nugroho, Y.K. & Shakeel, S.R. & Li, Zhaohua & Martinkauppi, B. & Hiltunen, E., 2017. "Using microalgae to produce liquid transportation biodiesel: What is next?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 391-400.
    14. Jailson Silva & Adriano Oliveira & Jeffson Oliveira & Marina Bouzon, 2025. "Barriers to digital transformation in fruit and vegetable supply chains: a multicriteria analysis using ISM and MICMAC," OPSEARCH, Springer;Operational Research Society of India, vol. 62(1), pages 460-482, March.
    15. Pankratz, Stan & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2017. "Algae production platforms for Canada's northern climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 109-120.
    16. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
    17. Anish Paul Antony & Kendra Leith & Craig Jolley & Jennifer Lu & Daniel J. Sweeney, 2020. "A Review of Practice and Implementation of the Internet of Things (IoT) for Smallholder Agriculture," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    18. Zhu, L.-D. & Hiltunen, E., 2016. "Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1285-1290.
    19. Francisco Carlos Vaz Sales & Michele De Souza & Luiz Reni Trento & Giancarlo Medeiros Pereira & Miriam Borchardt & Gabriel Sperandio Milan, 2023. "Food Waste in Distribution: Causes and Gaps to Be Filled," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    20. Thorin, Eva & Olsson, Jesper & Schwede, Sebastian & Nehrenheim, Emma, 2018. "Co-digestion of sewage sludge and microalgae – Biogas production investigations," Applied Energy, Elsevier, vol. 227(C), pages 64-72.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6864-:d:576900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.