IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6864-d576900.html
   My bibliography  Save this article

Process Design Guided by Life Cycle Assessment to Reduce Greenhouse Gas-Related Environmental Impacts of Food Processing

Author

Listed:
  • Dion M. F. Frampton

    (CSIRO Oceans and Atmosphere, Hobart 7000, Australia)

  • Nawshad Haque

    (CSIRO Energy, Melbourne 3168, Australia)

  • David I. Verrelli

    (Department of Biomedical Sciences, Macquarie University, Sydney 2109, Australia
    Department of Physics and Astronomy, Macquarie University, Sydney 2109, Australia)

  • Geoff J. Dumsday

    (CSIRO Manufacturing, Melbourne 3168, Australia)

  • Kim Jye Lee-Chang

    (CSIRO Oceans and Atmosphere, Hobart 7000, Australia)

Abstract

Food processing can generate large amounts of carbohydrate-rich waste that inevitably has environmental and social impacts. Meanwhile, certain heterotrophic marine microorganisms, including algae and thraustochytrids, have the potential to convert carbohydrate-rich substrates into oil-rich biomass over relatively short time frames. To assess the merits of this apparent synergy, an initial conceptual process was developed based on the use of raw potato processing waste as feed in an algal bioreactor to produce bio-oil for further use within the food industry. A practical flowsheet was established with a conventional 200 kL bioreactor whereby the unit processes were identified, the mass balance developed, and estimates made of the various material and energy demands. These inputs were used to develop a baseline life cycle assessment (LCA) model and to identify opportunities for reducing environmental impacts. With the functional unit (FU) being 1 tonne cooking oil, the baseline configuration had a greenhouse gas (GHG) footprint of 2.4 t CO 2 -e/FU, which is comparable to conventional process routes. More detailed LCA revealed that electricity for stirring the bioreactor contributed approximately 78% of the total GHG footprint. By adjusting the operating conditions, the most promising scenario produced 0.85 t CO 2 -e/FU—approximately four times less than the conventional process—and shows the potential advantages of applying LCA as a tool to develop and design a new production process.

Suggested Citation

  • Dion M. F. Frampton & Nawshad Haque & David I. Verrelli & Geoff J. Dumsday & Kim Jye Lee-Chang, 2021. "Process Design Guided by Life Cycle Assessment to Reduce Greenhouse Gas-Related Environmental Impacts of Food Processing," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6864-:d:576900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrik Mouron & Christian Willersinn & Sabrina Möbius & Jens Lansche, 2016. "Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    2. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    3. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    4. Sandeep Jagtap & Chintan Bhatt & Jaydeep Thik & Shahin Rahimifard, 2019. "Monitoring Potato Waste in Food Manufacturing Using Image Processing and Internet of Things Approach," Sustainability, MDPI, vol. 11(11), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    2. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    3. Álvaro J. Arnal & Patricia Royo & Gianpiero Pataro & Giovanna Ferrari & Víctor J. Ferreira & Ana M. López-Sabirón & Germán A. Ferreira, 2018. "Implementation of PEF Treatment at Real-Scale Tomatoes Processing Considering LCA Methodology as an Innovation Strategy in the Agri-Food Sector," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    4. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    5. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    6. Wang, Chang'an & Wu, Song & Lv, Qiang & Liu, Xuan & Chen, Wufeng & Che, Defu, 2017. "Study on correlations of coal chemical properties based on database of real-time data," Applied Energy, Elsevier, vol. 204(C), pages 1115-1123.
    7. Rodríguez, R. & Espada, J.J. & Moreno, J. & Vicente, G. & Bautista, L.F. & Morales, V. & Sánchez-Bayo, A. & Dufour, J., 2018. "Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach," Renewable Energy, Elsevier, vol. 129(PB), pages 724-732.
    8. Thomas Vallée & Gino Baudry & Patrice Guillotreau, 2017. "To discard or to coproduce by recycling waste: An output constraint analysis," Working Papers halshs-01591879, HAL.
    9. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    10. Yujie Xiao & Shuai Yang, 2016. "The Retail Chain Design for Perishable Food: The Case of Price Strategy and Shelf Space Allocation," Sustainability, MDPI, vol. 9(1), pages 1-11, December.
    11. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    12. Jae Hong Park & Phil Goo Kang & Eunseok Kim & Tae Woo Kim & Gahee Kim & Heejeong Seok & Jinwon Seo, 2021. "Introduction of IoT-Based Surrogate Parameters in the Ex-Post Countermeasure of Industrial Sectors in Integrated Permit Policy," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    13. Guillermo Garcia-Garcia & Guy Coulthard & Sandeep Jagtap & Mohamed Afy-Shararah & John Patsavellas & Konstantinos Salonitis, 2021. "Business Process Re-Engineering to Digitalise Quality Control Checks for Reducing Physical Waste and Resource Use in a Food Company," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    14. Guk-Jin Son & Dong-Hoon Kwak & Mi-Kyung Park & Young-Duk Kim & Hee-Chul Jung, 2021. "U-Net-Based Foreign Object Detection Method Using Effective Image Acquisition System: A Case of Almond and Green Onion Flake Food Process," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    15. Sandeep Jagtap & George Skouteris & Vilendra Choudhari & Shahin Rahimifard & Linh Nguyen Khanh Duong, 2021. "An Internet of Things Approach for Water Efficiency: A Case Study of the Beverage Factory," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    16. Nathana L. Cristofoli & Alexandre R. Lima & Rose D. N. Tchonkouang & Andreia C. Quintino & Margarida C. Vieira, 2023. "Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development," Sustainability, MDPI, vol. 15(7), pages 1-33, April.
    17. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    18. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Can microalgae biodiesel contribute to achieve the sustainability objectives in the transport sector in France by 2030? A comparison between first, second and third generation biofuels though a range-," Energy, Elsevier, vol. 155(C), pages 1032-1046.
    19. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    20. Kosinkova, Jana & Doshi, Amar & Maire, Juliette & Ristovski, Zoran & Brown, Richard & Rainey, Thomas J., 2015. "Measuring the regional availability of biomass for biofuels and the potential for microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1271-1285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6864-:d:576900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.