IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6649-d572922.html
   My bibliography  Save this article

Current Status of Aged Public Buildings and Effect Analysis Prediction of Green Remodeling in South Korea

Author

Listed:
  • Seunghoon Nam

    (SAMOOCM Architectures and Engineers, Seoul 05556, Korea)

  • Jaemoon Kim

    (SAMOOCM Architectures and Engineers, Seoul 05556, Korea
    Graduate School of Environmental Studies, Seoul National University, Seoul 08826, Korea)

  • Duwhan Lee

    (SAMOOCM Architectures and Engineers, Seoul 05556, Korea)

Abstract

The purpose of this study is to analyze the scope of the expected improvement effect of office buildings and educational research facilities according to green remodeling. Thus, in order to quantitatively grasp the architectural performance of the existing buildings, the building thermal performance, the airtightness, the indoor environment, and the air quality were measured using equipment. The analysis indicated that the envelope performance and the indoor environment were unsatisfactory compared to the current legal standards, and for indoor air quality, CO 2 and formaldehyde were measured to be dissatisfactory in some buildings. The energy analysis results indicated that the improvement range differed according to the renovation history for each building, resulting in differences in the energy-saving rate for each alternative. The reduction rates of primary energy consumption using energy simulation were 38.5–67.4% for office buildings and 23.7–66.3% for educational research facilities, and the payback periods were 14 to 27 years for office buildings and 12 to 30 years for educational research facilities. These results are expected to contribute to the activation of green remodeling because they can be used as indicators to predict the expected construction cost, the payback period, and the expected effect required for green remodeling.

Suggested Citation

  • Seunghoon Nam & Jaemoon Kim & Duwhan Lee, 2021. "Current Status of Aged Public Buildings and Effect Analysis Prediction of Green Remodeling in South Korea," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6649-:d:572922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Jing & Qiu, Yueming & James, Timothy & Ruddell, Benjamin L. & Dalrymple, Michael & Earl, Stevan & Castelazo, Alex, 2018. "Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 726-743.
    2. Christopher Charles Seeley & Shobhakar Dhakal, 2021. "Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand," Energies, MDPI, vol. 14(9), pages 1-17, April.
    3. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    4. Xin, Liu & Yan, Ding & Yujia, Tong & Neng, Zhu & Zhe, Tian, 2014. "Research on the evaluation system for heat metering and existing residential building retrofits in northern regions of China for the 12th five-year period," Energy, Elsevier, vol. 77(C), pages 898-908.
    5. Paola Marrone & Francesco Asdrubali & Daniela Venanzi & Federico Orsini & Luca Evangelisti & Claudia Guattari & Roberto De Lieto Vollaro & Lucia Fontana & Gianluca Grazieschi & Paolo Matteucci & Marta, 2021. "On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues," Energies, MDPI, vol. 14(5), pages 1-22, February.
    6. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2021. "Economic and Energy Analysis of Building Retrofitting Using Internal Insulations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    7. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saranathan Pragati & Radhakrishnan Shanthi Priya & Chandramouli Pradeepa & Ramalingam Senthil, 2023. "Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Xie & Yisheng Liu, 2022. "Tripartite Evolutionary Game Analysis of Stakeholder Decision-Making Behavior in Energy-Efficient Retrofitting of Office Buildings," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    2. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    3. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    4. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    5. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    6. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    7. Papineau, Maya & Yassin, Kareman & Newsham, Guy & Brice, Sarah, 2021. "Conditional demand analysis as a tool to evaluate energy policy options on the path to grid decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    9. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    10. Xin Liang & Geoffrey Qiping Shen & Li Guo, 2019. "Optimizing Incentive Policy of Energy-Efficiency Retrofit in Public Buildings: A Principal-Agent Model," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    11. Hammerle, Mara & Burke, Paul J., 2022. "From natural gas to electric appliances: Energy use and emissions implications in Australian homes," Energy Economics, Elsevier, vol. 110(C).
    12. Sayani Saha & Rahul B Hiremath & Sanjay Prasad & Bimlesh Kumar, 2021. "Barriers to Adoption of Commercial Green Buildings in India: A Review," Journal of Infrastructure Development, India Development Foundation, vol. 13(2), pages 107-128, December.
    13. Lauren Giandomenico & Maya Papineau & Nicholas Rivers, 2022. "A Systematic Review of Energy Efficiency Home Retrofit Evaluation Studies," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 689-708, October.
    14. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    16. Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
    17. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    18. Zihan Zhang & Junkang Song & Wanjiang Wang, 2023. "Study on the Behavior Strategy of the Subject of Low-Carbon Retrofit of Residential Buildings Based on Tripartite Evolutionary Game," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    19. Miriam Berretta & Joshua Furgeson & Yue (Nicole) Wu & Collins Zamawe & Ian Hamilton & John Eyers, 2021. "Residential energy efficiency interventions: A meta‐analysis of effectiveness studies," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    20. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6649-:d:572922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.