IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics0301421521006285.html
   My bibliography  Save this article

Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile

Author

Listed:
  • Calvo, Rubén
  • Álamos, Nicolás
  • Huneeus, Nicolás
  • O'Ryan, Raúl

Abstract

Residential firewood burning is the main source of PM2.5 emissions in southern and central Chile. In Chile, approximately 4000 premature deaths are observed each year due to air pollution. Mitigation policies aim to reduce dwellings' energy demand and foster cleaner but more expensive energy sources. Pre-existing energy poverty conditions are often overlooked in these policies, even though they can negatively affect the adoption of these measures. This article uses southern and central Chile as a case study to assess quantitatively different policy scenarios of PM2.5 emissions between 2017 and 2050, considering energy poverty-related effects. Results show that PM2.5 emissions will grow 16% over time under a business as usual scenario. If thermal improvement and stove/heater replacements are implemented, PM2.5 reductions depend on the scale of the policy: a 5%–6% reduction of total southern and central Chile PM2.5 emissions if only cities with Atmospheric Decontamination Plans are included; a 54%–56% reduction of PM2.5 emissions if these policies include other growing cities. Our study shows that the energy poverty effect potentially reduces the effectiveness of these measures in 25%. Consequently, if no anticipatory measures are taken, Chile's energy transition goals could be hindered and the effectiveness of mitigation policies to improve air quality significantly reduced.

Suggested Citation

  • Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521006285
    DOI: 10.1016/j.enpol.2021.112762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521006285
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    2. Dalia Streimikiene & Vidas Lekavičius & Tomas Baležentis & Grigorios L. Kyriakopoulos & Josef Abrhám, 2020. "Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Schueftan, Alejandra & González, Alejandro D., 2013. "Reduction of firewood consumption by households in south-central Chile associated with energy efficiency programs," Energy Policy, Elsevier, vol. 63(C), pages 823-832.
    4. Galvin, Ray, 2015. "‘Constant’ rebound effects in domestic heating: Developing a cross-sectional method," Ecological Economics, Elsevier, vol. 110(C), pages 28-35.
    5. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    6. Webber, Phil & Gouldson, Andy & Kerr, Niall, 2015. "The impacts of household retrofit and domestic energy efficiency schemes: A large scale, ex post evaluation," Energy Policy, Elsevier, vol. 84(C), pages 35-43.
    7. Mikul Bhatia & Nicolina Angelou, 2014. "Capturing the Multi-Dimensionality of Energy Access," World Bank Publications - Reports 18677, The World Bank Group.
    8. Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
    9. Galvin, Ray & Sunikka-Blank, Minna, 2013. "Economic viability in thermal retrofit policies: Learning from ten years of experience in Germany," Energy Policy, Elsevier, vol. 54(C), pages 343-351.
    10. Pablo Sarricolea & Mariajosé Herrera-Ossandon & Óliver Meseguer-Ruiz, 2017. "Climatic regionalisation of continental Chile," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 66-73, November.
    11. Sang-Hyeon Jin, 2020. "Fuel poverty and rebound effect in South Korea: An estimation for home appliances using the modified regression model," Energy & Environment, , vol. 31(7), pages 1147-1166, November.
    12. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    13. Deniz Bozkurt & Maisa Rojas & Juan Pablo Boisier & Jonás Valdivieso, 2018. "Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios," Climatic Change, Springer, vol. 150(3), pages 131-147, October.
    14. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Macedo & Mara Madaleno & Victor Moutinho, 2022. "A New Composite Indicator for Assessing Energy Poverty Using Normalized Entropy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(3), pages 1139-1163, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George E. Halkos & Panagiotis-Stavros C. Aslanidis, 2023. "Addressing Multidimensional Energy Poverty Implications on Achieving Sustainable Development," Energies, MDPI, vol. 16(9), pages 1-30, April.
    2. Reyes, René & Schueftan, Alejandra & Ruiz, Cecilia & González, Alejandro D., 2019. "Controlling air pollution in a context of high energy poverty levels in southern Chile: Clean air but colder houses?," Energy Policy, Elsevier, vol. 124(C), pages 301-311.
    3. Schueftan, Alejandra & Aravena, Claudia & Reyes, René, 2021. "Financing energy efficiency retrofits in Chilean households: The role of financial instruments, savings and uncertainty in energy transition," Resource and Energy Economics, Elsevier, vol. 66(C).
    4. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    5. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    6. Vásquez Lavin, Felipe & Barrientos, Manuel & Castillo, Álvaro & Herrera, Iván & Ponce Oliva, Roberto D., 2020. "Firewood certification programs: Key attributes and policy implications," Energy Policy, Elsevier, vol. 137(C).
    7. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    8. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    9. Intaek Yoon & YeonSang Lee & Sohyun Kate Yoon, 2017. "An empirical analysis of energy efficiency measures applicable to cities, regions, and local governments, based on the case of South Korea’s local energy saving program," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 863-878, August.
    10. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    11. Belaïd, Fateh & Bakaloglou, Salomé & Roubaud, David, 2018. "Direct rebound effect of residential gas demand: Empirical evidence from France," Energy Policy, Elsevier, vol. 115(C), pages 23-31.
    12. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    13. Kearns, Ade & Whitley, Elise & Curl, Angela, 2019. "Occupant behaviour as a fourth driver of fuel poverty (aka warmth & energy deprivation)," Energy Policy, Elsevier, vol. 129(C), pages 1143-1155.
    14. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2018. "The Effect of House Energy Efficiency Costs on the Participation Rate and Investment Amount of Lower-Income Households," MPRA Paper 86590, University Library of Munich, Germany.
    15. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    16. Liu, Fengqi & Kang, Yuxin & Guo, Kun, 2022. "Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index," Energy, Elsevier, vol. 251(C).
    17. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    18. Drivas, Kyriakos & Rozakis, Stelios & Xesfingi, Sofia, 2019. "The effect of house energy efficiency programs on the extensive and intensive margin of lower-income households’ investment behavior," Energy Policy, Elsevier, vol. 128(C), pages 607-615.
    19. Galvin, Ray, 2020. "Who co-opted our energy efficiency gains? A sociology of macro-level rebound effects and US car makers," Energy Policy, Elsevier, vol. 142(C).
    20. Carrasco-Garcés, Moisés & Vásquez-Lavín, Felipe & Ponce Oliva, Roberto D. & Diaz Pincheira, Francisco & Barrientos, Manuel, 2021. "Estimating the implicit discount rate for new technology adoption of wood-burning stoves," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521006285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.