IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v54y2013icp343-351.html
   My bibliography  Save this article

Economic viability in thermal retrofit policies: Learning from ten years of experience in Germany

Author

Listed:
  • Galvin, Ray
  • Sunikka-Blank, Minna

Abstract

Germany aims to reduce CO2 emissions by 80% by 2050 compared to 1990 levels and has merged this target with mandatory Energy Saving Regulations for thermal renovation of existing homes: the policy uses the criterion of ‘economic viability’, whereby renovations must pay back through the space and water heating fuel savings they produce. This paper explores the extent to which economically viable thermal renovations can contribute to the 80% goal, based on an analysis of Germany’s experience. It finds that the theoretical savings being achieved, based on calculated pre- and post-renovation consumption, are around 33%, while actual savings, based on measured consumption, are likely to be around 25%. The difference appears to be due to the effects of household behaviour. Further, average measured consumption is estimated to be around 150–180kWh/m2a nationally, and this would have to be reduced to 30–35kWh/m2a to meet the 80% policy goal. This is beyond the limits of economically viable renovation technology, which currently achieves around 100kWh/m2a. The paper suggests that policymakers should de-couple the criterion of economic viability from the 80% goal, emphasise other reasons for renovating to economically viable levels, and consider a more systematic approach to facilitate household behaviour change.

Suggested Citation

  • Galvin, Ray & Sunikka-Blank, Minna, 2013. "Economic viability in thermal retrofit policies: Learning from ten years of experience in Germany," Energy Policy, Elsevier, vol. 54(C), pages 343-351.
  • Handle: RePEc:eee:enepol:v:54:y:2013:i:c:p:343-351
    DOI: 10.1016/j.enpol.2012.11.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.11.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    2. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    3. Hoppe, T. & Bressers, J.Th.A. & Lulofs, K.R.D., 2011. "Local government influence on energy conservation ambitions in existing housing sites--Plucking the low-hanging fruit?," Energy Policy, Elsevier, vol. 39(2), pages 916-925, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galassi, Veronica & Madlener, Reinhard, 2017. "The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," Ecological Economics, Elsevier, vol. 141(C), pages 53-65.
    2. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    3. Galassi, Veronica & Madlener, Reinhard, 2016. "Some Like it Hot: The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," FCN Working Papers 11/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    5. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    6. Muel Kaptein, 2023. "A Paradox of Ethics: Why People in Good Organizations do Bad Things," Journal of Business Ethics, Springer, vol. 184(1), pages 297-316, April.
    7. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    8. Vance, Colin & Frondel, Manuel, 2015. "From fuel taxation to efficiency standards: A wrong turn in European climate protection?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113171, Verein für Socialpolitik / German Economic Association.
    9. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    10. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    11. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    12. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
    13. Benedetto, Graziella & Rugani, Benedetto & Vázquez-Rowe, Ian, 2014. "Rebound effects due to economic choices when assessing the environmental sustainability of wine," Food Policy, Elsevier, vol. 49(P1), pages 167-173.
    14. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. Rabindra Nepal, Muhammad Indra al Irsyad, and Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects in New Zealand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    17. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    18. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    19. Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
    20. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 34(2), pages 461-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:54:y:2013:i:c:p:343-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.