IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2760-d339720.html
   My bibliography  Save this article

From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil

Author

Listed:
  • Caio Cesar Moreira Chagas

    (Energy Planning Program (PPE), Coordination of Post-Graduation Programs in Engineering of the Federal University of Rio de Janeiro (COPPE/UFRJ), 21.941-914 Rio de Janeiro, Brazil
    Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), 59.550-000 João Câmara, Brazil)

  • Marcio Giannini Pereira

    (Energy Planning Program (PPE), Coordination of Post-Graduation Programs in Engineering of the Federal University of Rio de Janeiro (COPPE/UFRJ), 21.941-914 Rio de Janeiro, Brazil
    Electric Power Research Center (CEPEL), 21.944-970 Rio de Janeiro, Brazil
    International Virtual Institute of Global Change (IVIG), 21.941-909 Rio de Janeiro, Brazil)

  • Luiz Pinguelli Rosa

    (Energy Planning Program (PPE), Coordination of Post-Graduation Programs in Engineering of the Federal University of Rio de Janeiro (COPPE/UFRJ), 21.941-914 Rio de Janeiro, Brazil
    International Virtual Institute of Global Change (IVIG), 21.941-909 Rio de Janeiro, Brazil)

  • Neilton Fidelis da Silva

    (Energy Planning Program (PPE), Coordination of Post-Graduation Programs in Engineering of the Federal University of Rio de Janeiro (COPPE/UFRJ), 21.941-914 Rio de Janeiro, Brazil
    Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), 59.550-000 João Câmara, Brazil
    International Virtual Institute of Global Change (IVIG), 21.941-909 Rio de Janeiro, Brazil)

  • Marcos Aurélio Vasconcelos Freitas

    (Energy Planning Program (PPE), Coordination of Post-Graduation Programs in Engineering of the Federal University of Rio de Janeiro (COPPE/UFRJ), 21.941-914 Rio de Janeiro, Brazil
    International Virtual Institute of Global Change (IVIG), 21.941-909 Rio de Janeiro, Brazil)

  • Julian David Hunt

    (International Virtual Institute of Global Change (IVIG), 21.941-909 Rio de Janeiro, Brazil
    International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Luxenburg, Austria)

Abstract

Increased use of fossil fuels has contributed to global warming due to greenhouse gas emissions, which has led countries to implement policies that favor the gradual replacement of their use with renewable energy sources. Wind expansion in Brazil is a success story, but its adherence to distributed generation is still a big challenge. In this context, the authors of this paper argue that the development of robust and viable distributed power grids will also depend in the future on improving small wind generation as an important alternative to the diversity of decentralized power grids. In this study, the authors present an overview of the small-sized Aeolic (or wind) energy market in Brazil, with the objective to support the debate regarding its expansion. Promoting the small wind market in Brazil is still a big challenge, but lessons can be learned from the United States. In this context, the article uses the United States learning curve, analyzing barriers that were found, as well as public policies implemented to overcome them. The lessons learned in the American market may guide public policies aimed at fostering this technology in Brazil. If technological improvements, certification and introduction of financial incentives were implemented in Brazil, the small wind industry chain could grow substantially, building a trajectory to promote the low carbon economy.

Suggested Citation

  • Caio Cesar Moreira Chagas & Marcio Giannini Pereira & Luiz Pinguelli Rosa & Neilton Fidelis da Silva & Marcos Aurélio Vasconcelos Freitas & Julian David Hunt, 2020. "From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2760-:d:339720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    2. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    3. Heagle, A.L.B. & Naterer, G.F. & Pope, K., 2011. "Small wind turbine energy policies for residential and small business usage in Ontario, Canada," Energy Policy, Elsevier, vol. 39(4), pages 1988-1999, April.
    4. Silva, Neilton Fidelis da & Rosa, Luiz Pinguelli & Freitas, Marcos Aurélio Vasconcelos & Pereira, Marcio Giannini, 2013. "Wind energy in Brazil: From the power sector's expansion crisis model to the favorable environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 686-697.
    5. Mihaylov, Mihail & Rădulescu, Roxana & Razo-Zapata, Iván & Jurado, Sergio & Arco, Leticia & Avellana, Narcís & Nowé, Ann, 2019. "Comparing stakeholder incentives across state-of-the-art renewable support mechanisms," Renewable Energy, Elsevier, vol. 131(C), pages 689-699.
    6. Ko, Dong Hui & Jeong, Shin Taek & Kim, Yoon Chil, 2015. "Assessment of wind energy for small-scale wind power in Chuuk State, Micronesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 613-622.
    7. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    8. Wiener, Joshua G. & Koontz, Tomas M., 2012. "Extent and types of small-scale wind policies in the U.S. states: Adoption and effectiveness," Energy Policy, Elsevier, vol. 46(C), pages 15-24.
    9. Zhang, Sufang & Qi, Jianxun, 2011. "Small wind power in China: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2457-2460, June.
    10. Ruggiero, Salvatore & Varho, Vilja & Rikkonen, Pasi, 2015. "Transition to distributed energy generation in Finland: Prospects and barriers," Energy Policy, Elsevier, vol. 86(C), pages 433-443.
    11. Pereira, Marcio Giannini & Camacho, Cristiane Farias & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2012. "The renewable energy market in Brazil: Current status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3786-3802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    2. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    3. Fábio Ricardo Procópio de Araújo & Marcio Giannini Pereira & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Eduardo Janser de Azevedo Dantas, 2021. "Bigger Is Not Always Better: Review of Small Wind in Brazil," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Peng Wang & Daorina Bao & Mingzhi Zhao & Zhongyu Shi & Fan Gao & Feng Han, 2023. "The Design, Analysis, and Optimization of a New Pitch Mechanism for Small Wind Turbines," Energies, MDPI, vol. 16(18), pages 1-25, September.
    5. Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.
    6. Mauro J. Guerreiro Veloso & Carlos H. P. dos Santos & Jerson R. P. Vaz & Antonio M. Chaves Neto, 2023. "Quasi-Steady Analysis of a Small Wind Rotor with Swept Blades," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    7. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    9. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    2. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    3. Fábio Ricardo Procópio de Araújo & Marcio Giannini Pereira & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Eduardo Janser de Azevedo Dantas, 2021. "Bigger Is Not Always Better: Review of Small Wind in Brazil," Energies, MDPI, vol. 14(4), pages 1-26, February.
    4. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    5. Vanderson Aparecido Delapedra-Silva & Paula Ferreira & Jorge Cunha & Herbert Kimura, 2021. "Economic Evaluation of Wind Power Projects in a Mix of Free and Regulated Market Environments in Brazil," Energies, MDPI, vol. 14(11), pages 1-18, June.
    6. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    7. Aquila, Giancarlo & Rotela Junior, Paulo & de Oliveira Pamplona, Edson & de Queiroz, Anderson Rodrigo, 2017. "Wind power feasibility analysis under uncertainty in the Brazilian electricity market," Energy Economics, Elsevier, vol. 65(C), pages 127-136.
    8. Lyytimäki, Jari & Assmuth, Timo & Paloniemi, Riikka & Pyysiäinen, Jarkko & Rantala, Salla & Rikkonen, Pasi & Tapio, Petri & Vainio, Annukka & Winquist, Erika, 2021. "Two sides of biogas: Review of ten dichotomous argumentation lines of sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Farkat Diógenes, Jamil Ramsi & Coelho Rodrigues, José & Farkat Diógenes, Maria Caroline & Claro, João, 2020. "Overcoming barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 138(C).
    10. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    11. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    12. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    13. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    14. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    15. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    16. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    17. Black, Geoffrey & Holley, Donald & Solan, David & Bergloff, Michael, 2014. "Fiscal and economic impacts of state incentives for wind energy development in the Western United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 136-144.
    18. Valdes, Javier & Poque González, Axel Bastián & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2020. "Unveiling the potential for combined heat and power in Chilean industry - A policy perspective," Energy Policy, Elsevier, vol. 140(C).
    19. Mintra Trongtorkarn & Thanansak Theppaya & Kuaanan Techato & Montri Luengchavanon & Chainuson Kasagepongsarn, 2021. "Relationship between Starting Torque and Thermal Behaviour for a Permanent Magnet Synchronous Generator (PMSG) Applied with Vertical Axis Wind Turbine (VAWT)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    20. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2760-:d:339720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.