IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4642-d605718.html
   My bibliography  Save this article

Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm

Author

Listed:
  • Henda Zorgani Agrebi

    (Department of Electrical Engineering, National School of Engineering of Gabes, University of Gabes, Gabes 6029, Tunisia)

  • Naourez Benhadj

    (Department of Electrical Engineering, National School of Engineering of Sfax, University of Sfax, Soukra Sfax 3036, Tunisia)

  • Mohamed Chaieb

    (Department of Electrical Engineering, National School of Engineering of Carthage, University of Tunis, Tunis 2035, Tunisia)

  • Farooq Sher

    (Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK)

  • Roua Amami

    (Higher Institute of Agricultural Sciences, University of Sousse, Chott Meriem 4042, Tunisia)

  • Rafik Neji

    (Department of Electrical Engineering, National School of Engineering of Sfax, University of Sfax, Soukra Sfax 3036, Tunisia)

  • Neil Mansfield

    (Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK)

Abstract

In recent years, the investment in the wind energy sector has increased in the context of producing green electricity and saving the environment. The installation of small wind turbines (SWTs) represents an actual strategy for meeting energy needs for off-grid systems and certain specialized applications. SWTs are more expensive per kilowatt installed as compared to large-scale wind turbines. Therefore, the main objective of this study is to produce an economical technology for the wind power market offering low-cost SWTs. The idea consists of considering a simple structure of the wind turbine using direct-drive permanent magnet synchronous generator (DDPMSG). DDPMSGs are the most useful machines in the wind energy field thanks to several advantages, such as elimination of noise and maintenance cost due to suppression of the gearbox and absence of the rotor circuit excitation barriers by the presence of the permanent magnets (PMs). Their major downside is the high cost of active materials, especially the PMs. Thus, the improvement of the generator design is treated as being the main component of the considered chain to assure active materials’ mass and cost reduction. The methodology studied aims to explain the approach of the design integrated by optimization of the considered system. It is based on the elaboration of analytical models to find a feasible structure for the system, taking into account the multi-disciplinary analysis. The relevance of these models is validated by the finite element method using 2D MATLAB-FEMM simulation. The models are integrated to elaborate the optimization problem based on a genetic algorithm to improve the cost of the proposed generator by minimizing the mass of its active constructive materials. As an outcome, an optimal solution is offered for the wind generators market, providing a 16% cost reduction.

Suggested Citation

  • Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4642-:d:605718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Palmieri & Salvatore Bozzella & Giuseppe Leonardo Cascella & Marco Bronzini & Marco Torresi & Francesco Cupertino, 2018. "Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators," Energies, MDPI, vol. 11(10), pages 1-21, October.
    2. Osvaldo Rodriguez-Hernandez & Manuel Martinez & Carlos Lopez-Villalobos & Hector Garcia & Rafael Campos-Amezcua, 2019. "Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area," Energies, MDPI, vol. 12(5), pages 1-26, March.
    3. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    4. Caio Cesar Moreira Chagas & Marcio Giannini Pereira & Luiz Pinguelli Rosa & Neilton Fidelis da Silva & Marcos Aurélio Vasconcelos Freitas & Julian David Hunt, 2020. "From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    5. Zhang, Jian & Cui, Mingjian & He, Yigang, 2020. "Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data," Applied Energy, Elsevier, vol. 261(C).
    6. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2018. "Energy and economic performance of small wind energy systems under different climatic conditions of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 376-392.
    7. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    8. Dai, Juchuan & Yang, Xin & Wen, Li, 2018. "Development of wind power industry in China: A comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 156-164.
    9. Ahmad, Ghulam & Amin, Uzma, 2017. "Design, construction and study of small scale vertical axis wind turbine based on a magnetically levitated axial flux permanent magnet generator," Renewable Energy, Elsevier, vol. 101(C), pages 286-292.
    10. Francesco Papi & Alberto Nocentini & Giovanni Ferrara & Alessandro Bianchini, 2021. "On the Use of Modern Engineering Codes for Designing a Small Wind Turbine: An Annotated Case Study," Energies, MDPI, vol. 14(4), pages 1-23, February.
    11. Ram, Krishnil R. & Lal, Sunil P. & Ahmed, M. Rafiuddin, 2019. "Design and optimization of airfoils and a 20 kW wind turbine using multi-objective genetic algorithm and HARP_Opt code," Renewable Energy, Elsevier, vol. 144(C), pages 56-67.
    12. Bin Zhao & Hui Li & Mingyu Wang & Yaojun Chen & Shengquan Liu & Dong Yang & Chao Yang & Yaogang Hu & Zhe Chen, 2014. "An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System," Energies, MDPI, vol. 7(5), pages 1-18, May.
    13. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    14. Krzysztof Wrobel & Krzysztof Tomczewski & Artur Sliwinski & Andrzej Tomczewski, 2021. "Optimization of a Small Wind Power Plant for Annual Wind Speed Distribution," Energies, MDPI, vol. 14(6), pages 1-18, March.
    15. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casper J. J. Labuschagne & Maarten J. Kamper, 2022. "On the Design and Topology Selection of Permanent Magnet Synchronous Generators for Natural Impedance Matching in Small-Scale Uncontrolled Passive Wind Generator Systems," Energies, MDPI, vol. 15(5), pages 1-23, March.
    2. Wang, Pengfei & Zhu, Ze & Liang, Wenlong & Liao, Longtao & Wan, Jiashuang, 2023. "Hybrid mechanistic and neural network modeling of nuclear reactors," Energy, Elsevier, vol. 282(C).
    3. Lahcen Amri & Smail Zouggar & Jean-Frédéric Charpentier & Mohamed Kebdani & Abdelhamid Senhaji & Abdelilah Attar & Farid Bakir, 2023. "Design and Optimization of Synchronous Motor Using PM Halbach Arrays for Rim-Driven Counter-Rotating Pump," Energies, MDPI, vol. 16(7), pages 1-17, March.
    4. Joon-Ha Hwang & Deok-je Bang & Gang-Won Jang, 2023. "Structural Analysis and Lightweight Optimization of a Buoyant Rotor-Type Permanent Magnet Generator for a Direct-Drive Wind Turbine," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    2. Yi Song Liu & Tan Yigitcanlar & Mirko Guaralda & Kenan Degirmenci & Aaron Liu & Michael Kane, 2022. "Leveraging the Opportunities of Wind for Cities through Urban Planning and Design: A PRISMA Review," Sustainability, MDPI, vol. 14(18), pages 1-78, September.
    3. Gaigalis, Vygandas & Katinas, Vladislovas, 2020. "Analysis of the renewable energy implementation and prediction prospects in compliance with the EU policy: A case of Lithuania," Renewable Energy, Elsevier, vol. 151(C), pages 1016-1027.
    4. Wolf-Gerrit Früh, 2023. "Assessing the Performance of Small Wind Energy Systems Using Regional Weather Data," Energies, MDPI, vol. 16(8), pages 1-21, April.
    5. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    6. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    7. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    8. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    9. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    10. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    11. Giovanni Ferrara & Alessandro Bianchini, 2021. "Special Issue “Numerical Simulation of Wind Turbines”," Energies, MDPI, vol. 14(6), pages 1-2, March.
    12. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    13. Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
    14. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    16. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    17. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    18. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    19. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    20. Busiswe Skosana & Mukwanga W. Siti & Nsilulu T. Mbungu & Sonu Kumar & Willy Mulumba, 2023. "An Evaluation of Potential Strategies in Renewable Energy Systems and Their Importance for South Africa—A Review," Energies, MDPI, vol. 16(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4642-:d:605718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.