IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2745-d339518.html
   My bibliography  Save this article

Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions

Author

Listed:
  • Osman Taylan

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Rami Alamoudi

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Mohammad Kabli

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Alawi AlJifri

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Fares Ramzi

    (Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah P.O. Box 80204, Saudi Arabia)

  • Enrique Herrera-Viedma

    (Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain
    Department of Electrical and Computer Engineering, Faculty of Engineering, King, Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Energy systems planning commonly involves the study of supply and demand of power, forecasting the trends of parameters established on economics and technical criteria of models. Numerous measures are needed for the fulfillment of energy system assessment and the investment plans. The higher energy prices which call for diversification of energy systems and managing the resolution of conflicts are the results of high energy demand for growing economies. Due to some challenging problems of fossil fuels, energy production and distribution from alternative sources are getting more attention. This study aimed to reveal the most proper energy systems in Saudi Arabia for investment. Hence, integrated fuzzy AHP (Analytic Hierarchy Process), fuzzy VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) and TOPSIS (Technique for Order Preferences by Similarity to Idle Solution) methodologies were employed to determine the most eligible energy systems for investment. Eight alternative energy systems were assessed against nine criteria—power generation capacity, efficiency, storability, safety, air pollution, being depletable, net present value, enhanced local economic development, and government support. Data were collected using the Delphi method, a team of three decision-makers (DMs) was established in a heterogeneous manner with the addition of nine domain experts to carry out the analysis. The fuzzy AHP approach was used for clarifying the weight of criteria and fuzzy VIKOR and TOPSIS were utilized for ordering the alternative energy systems according to their investment priority. On the other hand, sensitivity analysis was carried out to determine the priority of investment for energy systems and comparison of them using the weight of group utility and fuzzy DEA (Data Envelopment Analysis) approaches. The results and findings suggested that solar photovoltaic (PV) is the paramount renewable energy system for investment, according to both fuzzy VIKOR and fuzzy TOPSIS approaches. In this context our findings were compared with other works comprehensively.

Suggested Citation

  • Osman Taylan & Rami Alamoudi & Mohammad Kabli & Alawi AlJifri & Fares Ramzi & Enrique Herrera-Viedma, 2020. "Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions," Sustainability, MDPI, vol. 12(7), pages 1-27, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2745-:d:339518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.
    2. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    3. Seyfried, Caitlin & Palko, Hannah & Dubbs, Lindsay, 2019. "Potential local environmental impacts of salinity gradient energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 111-120.
    4. R. Krishankumar & K. S. Ravichandran & Samarjit Kar & Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Abbas Mardani, 2019. "Scientific Decision Framework for Evaluation of Renewable Energy Sources under Q-Rung Orthopair Fuzzy Set with Partially Known Weight Information," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    5. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    6. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    7. Rezaei, Jafar & Ortt, Roland, 2013. "Multi-criteria supplier segmentation using a fuzzy preference relations based AHP," European Journal of Operational Research, Elsevier, vol. 225(1), pages 75-84.
    8. Yucheng Dong & Cong-Cong Li & Yinfeng Xu & Xin Gu, 2015. "Consensus-Based Group Decision Making Under Multi-granular Unbalanced 2-Tuple Linguistic Preference Relations," Group Decision and Negotiation, Springer, vol. 24(2), pages 217-242, March.
    9. Jun Dong & Dongran Liu & Dongxue Wang & Qi Zhang, 2019. "Identification of Key Influencing Factors of Sustainable Development for Traditional Power Generation Groups in a Market by Applying an Extended MCDM Model," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    10. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    11. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    12. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    13. Ceren Erdin & Gokhan Ozkaya, 2019. "Turkey’s 2023 Energy Strategies and Investment Opportunities for Renewable Energy Sources: Site Selection Based on ELECTRE," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    14. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    15. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    16. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    17. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    18. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    19. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    20. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    21. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    22. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    23. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    24. Vishnupriyan, J. & Manoharan, P.S., 2018. "Multi-criteria decision analysis for renewable energy integration: A southern India focus," Renewable Energy, Elsevier, vol. 121(C), pages 474-488.
    25. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    26. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    27. Abdolreza Yazdani-Chamzini & Mohammad Majid Fouladgar & Edmundas Kazimieras Zavadskas & S. Hamzeh Haji Moini, 2013. "Selecting the optimal renewable energy using multi criteria decision making," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(5), pages 957-978, November.
    28. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    29. Raghunathan Krishankumar & Arunodaya Raj Mishra & Kattur Soundarapandian Ravichandran & Xindong Peng & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Abbas Mardani, 2020. "A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set," Energies, MDPI, vol. 13(4), pages 1-25, February.
    30. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiangrong & Zhu, Shaoying & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2020. "Kano-based mapping of innovation strategies for renewable energy alternatives using hybrid interval type-2 fuzzy decision-making approach," Energy, Elsevier, vol. 211(C).
    2. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    3. José Vicens-Colom & Joe Holles & Vicente Liern, 2021. "Measuring Sustainability with Unweighted TOPSIS: An Application to Sustainable Tourism in Spain," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    4. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    5. Lin, Jian & Zhong, Xiaoyi & Wang, Jing & Huang, Yuan & Bai, Xuetao & Wang, Xiaonan & Shah, Nilay & Xie, Shan & Zhao, Yingru, 2021. "Relative optimization potential: A novel perspective to address trade-off challenges in urban energy system planning," Applied Energy, Elsevier, vol. 304(C).
    6. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.
    7. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    8. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).
    9. Junlan Tan & Yasir Ahmed Solangi, 2024. "Assessing impact investing for green infrastructure development in low-carbon transition and sustainable development in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25257-25280, October.
    10. Rami Alamoudi & Osman Taylan & Mehmet Azmi Aktacir & Enrique Herrera-Viedma, 2021. "Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches," Mathematics, MDPI, vol. 9(22), pages 1-24, November.
    11. Rehman, Obaid ur & Ali, Yousaf & Sabir, Muhammad, 2022. "Risk assessment and mitigation for electric power sectors: A developing country's perspective," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    12. Manuel Sousa & Maria Fatima Almeida & Rodrigo Calili, 2021. "Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda," Sustainability, MDPI, vol. 13(8), pages 1-37, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    2. Hashemizadeh, Ali & Ju, Yanbing & Bamakan, Seyed Mojtaba Hosseini & Le, Hoang Phong, 2021. "Renewable energy investment risk assessment in belt and road initiative countries under uncertainty conditions," Energy, Elsevier, vol. 214(C).
    3. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    4. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    5. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Chiranjib Bhowmik & Sumit Bhowmik & Amitava Ray, 2021. "Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13890-13918, September.
    7. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    8. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    9. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    10. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    11. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    12. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    13. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    14. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Ali Mostafaeipour & Ali Sadeghi Sedeh & Shahariar Chowdhury & Kuaanan Techato, 2020. "Ranking Potential Renewable Energy Systems to Power On-Farm Fertilizer Production," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    16. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.
    17. Ahmad, Salman & Nadeem, Abid & Akhanova, Gulzhanat & Houghton, Tom & Muhammad-Sukki, Firdaus, 2017. "Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan," Energy, Elsevier, vol. 141(C), pages 1880-1891.
    18. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    19. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    20. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2745-:d:339518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.