IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2376-d334002.html
   My bibliography  Save this article

Energy Intensity and Human Mobility after the Anthropocene

Author

Listed:
  • J. Mohorčich

    (Lehman College, The City University of New York, New York, NY 10017, USA)

Abstract

After the Anthropocene, human settlements will likely have less available energy to move people and things. This paper considers the feasibility of five modes of transportation under two energy-constrained scenarios. It analyzes the effects transportation mode choice is likely to have on the size of post-Anthropocene human settlements, as well as the role speed and energy play in such considerations. I find that cars, including battery-electric cars, are not feasible under a highly energy-constrained scenario, that buses, metros, and walking are feasible but will limit human settlement size, and that cycling is likely the only mode of transportation that would make suburbs possible in an energy-constrained post-Anthropocene scenario.

Suggested Citation

  • J. Mohorčich, 2020. "Energy Intensity and Human Mobility after the Anthropocene," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2376-:d:334002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason M. Hall-Spencer & Riccardo Rodolfo-Metalpa & Sophie Martin & Emma Ransome & Maoz Fine & Suzanne M. Turner & Sonia J. Rowley & Dario Tedesco & Maria-Cristina Buia, 2008. "Volcanic carbon dioxide vents show ecosystem effects of ocean acidification," Nature, Nature, vol. 454(7200), pages 96-99, July.
    2. Tisdell, Clement A., 2008. "Economic Benefits and Drawbacks of Cities and their Growth," Economic Theory, Applications and Issues Working Papers 90615, University of Queensland, School of Economics.
    3. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    6. Heikkurinen, Pasi & Ruuska, Toni & Wilén, Kristoffer & Ulvila, Marko, 2019. "The Anthropocene exit: Reconciling discursive tensions on the new geological epoch," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    2. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Dunlap, J. & Schramski, J.R., 2024. "Energy-systems accounting in industrial-natural systems; An energy analysis of a managed forest ecosystem including food web biomass dynamics," Ecological Modelling, Elsevier, vol. 488(C).
    4. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    6. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    7. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    8. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    9. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    11. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    12. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    13. Svizzero, Serge & Tisdell, Clem, "undated". "Inequality and Wealth Creation in Ancient History: Malthus' Theory Reconsidered," Economic Theory, Applications and Issues Working Papers 183285, University of Queensland, School of Economics.
    14. Serge Svizzero & Clement Allan Tisdell, 2015. "The Role of Palatial Economic Organization in Creating Wealth in Minoan and Mycenaean States," Working Papers hal-02150102, HAL.
    15. Tisdell, Clem & Svizzero, Serge, "undated". "Different Behavioral Explanations of the Neolithic Transition from Foraging to Agriculture: A Review," Economic Theory, Applications and Issues Working Papers 229769, University of Queensland, School of Economics.
    16. Nick King & Aled Jones, 2021. "An Analysis of the Potential for the Formation of ‘Nodes of Persisting Complexity’," Sustainability, MDPI, vol. 13(15), pages 1-32, July.
    17. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    18. Clem Tisdell, 2009. "Economic Reform and Openness in China: China’s Development Policies in the Last 30 Years," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 271-294, September.
    19. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    20. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2376-:d:334002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.