IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9482-d445122.html
   My bibliography  Save this article

Multi-Criteria Ranking of Green Materials According to the Goals of Sustainable Development

Author

Listed:
  • Amirhossein Balali

    (Department of Civil Engineering, Shiraz Branch, Islamic Azad University, Shiraz 5-71993, Iran)

  • Alireza Valipour

    (Department of Civil Engineering, Shiraz Branch, Islamic Azad University, Shiraz 5-71993, Iran)

  • Edmundas Kazimieras Zavadskas

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT–10223 Vilnius, Lithuania)

  • Zenonas Turskis

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT–10223 Vilnius, Lithuania)

Abstract

Modern, well-educated and experienced policy-makers support and promote the use of environmentally friendly materials and resources. The use of green resources is an exceptional and inevitable strategy to meet the needs of a rapidly growing Earth population. The growing population raises the need for new housing construction and urban infrastructure development. Such substances in construction refer to green building materials (GBMs). The environmental impact is lower if GBMs replace non-GBMs. Here, ranking among GBMs can facilitate and support the selection process. This study aimed to contribute to the body of knowledge to introduce a method for identifying and prioritizing GBMs in the construction industry to use in green building. The required data were collected using existing literature, interviews and questionnaires. Relevant Sustainable Development Goals (SDGs) are the first criteria for assessing GBM selection criteria. Critical weighted GBM selection criteria are the second criteria for prioritizing GBMs. The results show that “Natural, Plentiful and Renewable”, “Affordability from cradle to gate” and “Affordability during operation” are the top three GBM selection criteria. The real case study helped select “Stramit Strawboard”, “Aluminium Composite Panels (ACPs)” and “Solar Roof Tiles” as the most suitable GBMs for use in the context of the study. The model and results presented in this study will help actors of the construction industry to select and use GBMs more quickly and thus achieve a better level of construction sustainability, as well as environmental friendliness, than before.

Suggested Citation

  • Amirhossein Balali & Alireza Valipour & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2020. "Multi-Criteria Ranking of Green Materials According to the Goals of Sustainable Development," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9482-:d:445122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hannan Amoozad Mahdiraji & Sepas Arzaghi & Gintaras Stauskis & Edmundas Kazimieras Zavadskas, 2018. "A Hybrid Fuzzy BWM-COPRAS Method for Analyzing Key Factors of Sustainable Architecture," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    2. McArthur, John W. & Rasmussen, Krista, 2018. "Change of pace: Accelerations and advances during the Millennium Development Goal era," World Development, Elsevier, vol. 105(C), pages 132-143.
    3. Ghenai, Chaouki & Albawab, Mona & Bettayeb, Maamar, 2020. "Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method," Renewable Energy, Elsevier, vol. 146(C), pages 580-597.
    4. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balali, Amirhossein & Valipour, Alireza & Edwards, Rodger & Moehler, Robert, 2021. "Ranking effective risks on human resources threats in natural gas supply projects using ANP-COPRAS method: Case study of Shiraz," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Yan Dai & Yasir Ahmed Solangi, 2023. "Evaluating and Prioritizing the Green Infrastructure Finance Risks for Sustainable Development in China," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    3. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Ahmed M. A. Shohda & Mahrous A. M. Ali & Gaofeng Ren & Jong-Gwan Kim & Ahmed M. Abdo & Wael R. Abdellah & Abbas M. Hassan, 2022. "Sustainable Assignment of Egyptian Ornamental Stones for Interior and Exterior Building Finishes Using the AHP-TOPSIS Technique," Sustainability, MDPI, vol. 14(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yücenur, G. Nilay & Ipekçi, Ahmet, 2021. "SWARA/WASPAS methods for a marine current energy plant location selection problem," Renewable Energy, Elsevier, vol. 163(C), pages 1287-1298.
    2. Niloofar Vahabzadeh Najafi & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh, 2020. "An Integrated Sustainable and Flexible Supplier Evaluation Model under Uncertainty by Game Theory and Subjective/Objective Data: Iranian Casting Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(4), pages 309-322, December.
    3. Mohammed Ali Ahmed Al-Sharafi & Shu Tong & Abdullah Aloqab, 2021. "The Effective Role of Internal Factors on Reconstructing Telecom Companies: The Case of Yemen Telecom," Sustainability, MDPI, vol. 13(3), pages 1-23, February.
    4. Magdalena Tutak & Jarosław Brodny & Peter Bindzár, 2021. "Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030," Energies, MDPI, vol. 14(6), pages 1-32, March.
    5. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    6. Seyed Morteza Hatefi & Hamideh Asadi & Gholamreza Shams & Jolanta Tamošaitienė & Zenonas Turskis, 2021. "Model for the Sustainable Material Selection by Applying Integrated Dempster-Shafer Evidence Theory and Additive Ratio Assessment (ARAS) Method," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    7. Jyh-Rong Chou, 2021. "A Scoping Review of Ontologies Relevant to Design Strategies in Response to the UN Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    8. Raghunathan Krishankumar & Arunodaya Raj Mishra & Kattur Soundarapandian Ravichandran & Xindong Peng & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Abbas Mardani, 2020. "A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set," Energies, MDPI, vol. 13(4), pages 1-25, February.
    9. Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    10. Edward Ayebeng Botchway & Kofi Agyekum & Jenefailus Nikoi Kotei-Martin & Hayford Pittri & Annabel Morkporkpor Ami Dompey & Samuel Owusu Afram & Nathaniel Elikplim Asare, 2023. "Achieving Healthy City Development in Ghana: Referencing Sustainable Development Goal 11," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    11. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    12. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    13. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    14. Guillaume Lafortune & Grayson Fuller & Guido Schmidt-Traub & Christian Kroll, 2020. "How Is Progress towards the Sustainable Development Goals Measured? Comparing Four Approaches for the EU," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    15. McArthur, John W. & Rasmussen, Krista, 2019. "Classifying Sustainable Development Goal trajectories: A country-level methodology for identifying which issues and people are getting left behind," World Development, Elsevier, vol. 123(C), pages 1-1.
    16. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    17. Alkire, Sabina & Nogales, Ricardo & Quinn, Natalie Naïri & Suppa, Nicolai, 2023. "On track or not? Projecting the global Multidimensional Poverty Index," Journal of Development Economics, Elsevier, vol. 165(C).
    18. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Gupta, Suraksha & Kanungo, Rama Prasad, 2022. "Financial inclusion through digitalisation: Economic viability for the bottom of the pyramid (BOP) segment," Journal of Business Research, Elsevier, vol. 148(C), pages 262-276.
    20. K. Koppiahraj & S. Bathrinath & V. G. Venkatesh & Venkatesh Mani & Yangyan Shi, 2023. "Optimal sustainability assessment method selection: a practitioner perspective," Annals of Operations Research, Springer, vol. 324(1), pages 629-662, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9482-:d:445122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.