IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8929-d435565.html
   My bibliography  Save this article

Sustainable Mobility through Safer Roads: Translating Road Safety Strategy into Local Context in Western Australia

Author

Listed:
  • Shariful Malik

    (School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia)

  • Mohammad Shahidul Hasan Swapan

    (School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia)

  • Shahed Khan

    (School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia)

Abstract

Road safety is an ongoing challenge to sustainable mobility and transportation. The target set by the Sustainable Development Goals (SDGs) suggests reframing the issue with a broader outlook and pragmatic system. Unlike previous road safety strategies and models that favour engineering solutions and legal instruments, there is an increasing need to consider local context and complexities. While such principles have been increasingly featured in higher-level policy frameworks in national or state-level strategies (e.g., Safe System or Vision Zero approach), an effort to translate them into implementable actions for local development areas is absent. To address this gap, this study aims to develop a conceptual framework to examine the nature and extent to which statewide principles are translated into local government policies. We outline a 4C Framework (consisting of clarity, capability, changing context, and community engagement) to evaluate local policy integration in Perth, Western Australia. A five-point indicative scale is applied to evaluate the selected policy instruments against this framework. The results show that only a little over a quarter (27%) demonstrated a highly satisfactory performance in capturing higher-level policy objectives. The low-scoring councils failed to demonstrate the ability to consider future changes and inclusive road design. Councils along the periphery having new residential development showed comparatively greater success in translating overarching strategies. Regional cooperation has been very effective in enabling local agencies to adopt a more sustainable pathway to road safety measures. The criteria proposed within the framework will play a pivotal role in effective policy integration and to achieve more context-sensitive outcomes that are beyond the scope of modern road safety strategies.

Suggested Citation

  • Shariful Malik & Mohammad Shahidul Hasan Swapan & Shahed Khan, 2020. "Sustainable Mobility through Safer Roads: Translating Road Safety Strategy into Local Context in Western Australia," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8929-:d:435565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcus Lane & Geoff McDonald, 2005. "Community-based Environmental Planning: Operational Dilemmas, Planning Principles and Possible Remedies," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(5), pages 709-731.
    2. Giliberto Capano & Michael Howlett, 2020. "The Knowns and Unknowns of Policy Instrument Analysis: Policy Tools and the Current Research Agenda on Policy Mixes," SAGE Open, , vol. 10(1), pages 21582440199, January.
    3. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    4. Kröger, Lars & Kuhnimhof, Tobias & Trommer, Stefan, 2019. "Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 146-161.
    5. Rall, Emily Lorance & Kabisch, Nadja & Hansen, Rieke, 2015. "A comparative exploration of uptake and potential application of ecosystem services in urban planning," Ecosystem Services, Elsevier, vol. 16(C), pages 230-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pistelok & Daniel Štraub, 2021. "Evaluation of the Road Policy in the Light of Vision Zero in Jaworzno, Poland," Sustainability, MDPI, vol. 13(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    2. Jörg Sonnleitner & Markus Friedrich & Emely Richter, 2022. "Impacts of highly automated vehicles on travel demand: macroscopic modeling methods and some results," Transportation, Springer, vol. 49(3), pages 927-950, June.
    3. Esko Lehtonen & Johanna Wörle & Fanny Malin & Barbara Metz & Satu Innamaa, 2022. "Travel experience matters: Expected personal mobility impacts after simulated L3/L4 automated driving," Transportation, Springer, vol. 49(5), pages 1295-1314, October.
    4. Jamil Hamadneh & Domokos Esztergár-Kiss, 2021. "The Influence of Introducing Autonomous Vehicles on Conventional Transport Modes and Travel Time," Energies, MDPI, vol. 14(14), pages 1-28, July.
    5. Dannemiller, Katherine A. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Chandra R., 2021. "Investigating autonomous vehicle impacts on individual activity-travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 402-422.
    6. Wang, Jinghui & Yang, Hao, 2023. "Low carbon future of vehicle sharing, automation, and electrification: A review of modeling mobility behavior and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Fatemeh Nazari & Mohamadhossein Noruzoliaee & Abolfazl Mohammadian, 2023. "Behavioral acceptance of automated vehicles: The roles of perceived safety concern and current travel behavior," Papers 2302.12225, arXiv.org, revised Jan 2024.
    8. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    9. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    10. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    11. Bridgelall, Raj & Patterson, Douglas A. & Tolliver, Denver D., 2020. "Policy implications of truck platooning and electrification," Energy Policy, Elsevier, vol. 139(C).
    12. Tandarić, Neven & Ives, Christopher D. & Watkins, Charles, 2022. "From city in the park to “greenery in plant pots”: The influence of socialist and post-socialist planning on opportunities for cultural ecosystem services," Land Use Policy, Elsevier, vol. 120(C).
    13. Mahsa Mesgar & Diego Ramirez-Lovering & Mohamed El-Sioufi, 2021. "Tension, Conflict, and Negotiability of Land for Infrastructure Retrofit Practices in Informal Settlements," Land, MDPI, vol. 10(12), pages 1-15, November.
    14. Adams, Clare & Frantzeskaki, Niki & Moglia, Magnus, 2023. "Mainstreaming nature-based solutions in cities: A systematic literature review and a proposal for facilitating urban transitions," Land Use Policy, Elsevier, vol. 130(C).
    15. Chiara Cortinovis & Grazia Zulian & Davide Geneletti, 2018. "Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy)," Land, MDPI, vol. 7(4), pages 1-20, September.
    16. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    17. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    18. Alastair Stark & Sophie Yates, 2021. "Public inquiries as procedural policy tools [Policy tools theory and implementation networks: understanding state enterprise zone partnerships]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(3), pages 345-361.
    19. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    20. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8929-:d:435565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.