IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7394-d410973.html
   My bibliography  Save this article

On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia

Author

Listed:
  • Mohammed Al-Turki

    (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Arshad Jamal

    (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Hassan M. Al-Ahmadi

    (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammed A. Al-Sughaiyer

    (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Muhammad Zahid

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

Abstract

Intelligent traffic control at urban intersections is vital to ensure efficient and sustainable traffic operations. Urban road intersections are hotspots of congestion and traffic accidents. Poor traffic management at these locations could cause numerous issues, such as longer travel time, low travel speed, long vehicle queues, delays, increased fuel consumption, and environmental emissions, and so forth. Previous studies have shown that the mentioned traffic performance measures or measures of effectiveness (MOEs) could be significantly improved by adopting intelligent traffic control protocols. The majority of studies in this regard have focused on mono or bi-objective optimization with homogenous and lane-based traffic conditions. However, decision-makers often have to deal with multiple conflicting objectives to find an optimal solution under heterogeneous stochastic traffic conditions. Therefore, it is essential to determine the optimum decision plan that offers the least conflict among several objectives. Hence, the current study aimed to develop a multi-objective intelligent traffic control protocol based on the non-dominated sorting genetic algorithm II (NSGA-II) at isolated signalized intersections in the city of Dhahran, Kingdom of Saudi Arabia. The MOEs (optimization objectives) that were considered included average vehicle delay, the total number of vehicle stops, average fuel consumption, and vehicular emissions. NSGA-II simulations were run with different initial populations. The study results showed that the proposed method was effective in optimizing considered performance measures along the optimal Pareto front. MOEs were improved in the range of 16% to 23% compared to existing conditions. To assess the efficacy of the proposed approach, an optimization analysis was performed using a Synchro traffic light simulation and optimization tool. Although the Synchro optimization resulted in a relatively lower signal timing plan than NSGA-II, the proposed algorithm outperformed the Synchro optimization results in terms of percentage reduction in MOE values.

Suggested Citation

  • Mohammed Al-Turki & Arshad Jamal & Hassan M. Al-Ahmadi & Mohammed A. Al-Sughaiyer & Muhammad Zahid, 2020. "On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7394-:d:410973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shenzhen Ding & Xumei Chen & Lei Yu & Xu Wang, 2019. "Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    2. Chang, Tang-Hsien & Lin, Jen-Ting, 2000. "Optimal signal timing for an oversaturated intersection," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 471-491, August.
    3. Shaheen, Susan & Lipman, Timothy, 2007. "Reducing Greenhouse Emissions and Fuel Consumption," Institute of Transportation Studies, Working Paper Series qt69c427zk, Institute of Transportation Studies, UC Davis.
    4. Daniel Albalate & Xavier Fageda, 2019. "Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    5. Takao Dantsuji & Daisuke Fukuda & Nan Zheng, 2021. "Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach," Transportation, Springer, vol. 48(2), pages 673-697, April.
    6. Muhammad Zahid & Yangzhou Chen & Arshad Jamal & Coulibaly Zie Mamadou, 2020. "Freeway Short-Term Travel Speed Prediction Based on Data Collection Time-Horizons: A Fast Forest Quantile Regression Approach," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    7. Arshad Jamal & Muhammad Tauhidur Rahman & Hassan M. Al-Ahmadi & Irfan Ullah & Muhammad Zahid, 2020. "Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    8. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    9. Elżbieta Macioszek, 2020. "Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Silvia Poles & Yan Fu & Enrico Rigoni, 2009. "The Effect of Initial Population Sampling on the Convergence of Multi-Objective Genetic Algorithms," Lecture Notes in Economics and Mathematical Systems, in: Vincent Barichard & Matthias Ehrgott & Xavier Gandibleux & Vincent T'Kindt (ed.), Multiobjective Programming and Goal Programming, pages 123-133, Springer.
    11. C K Wong & Yi Liu, 2019. "Optimization of signalized network configurations using the Lane-based method," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-36, June.
    12. Liu, Shiyong & Triantis, Konstantinos P. & Sarangi, Sudipta, 2010. "A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 596-608, October.
    13. Mingzhu Song & Kaiping Wang & Yi Zhang & Meng Li & He Qi & Yi Zhang, 2020. "Impact Evaluation of Bike-Sharing on Bicycling Accessibility," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minjung Kim & Max Schrader & Hwan-Sik Yoon & Joshua A. Bittle, 2023. "Optimal Traffic Signal Control Using Priority Metric Based on Real-Time Measured Traffic Information," Sustainability, MDPI, vol. 15(9), pages 1-18, May.
    2. Jun Du & Bin Jia & Shiteng Zheng, 2022. "Stability Analysis of Continuous Stochastic Linear Model," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
    3. Suhaib Alshayeb & Aleksandar Stevanovic & Nikola Mitrovic & Elio Espino, 2022. "Traffic Signal Optimization to Improve Sustainability: A Literature Review," Energies, MDPI, vol. 15(22), pages 1-24, November.
    4. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    5. Taraneh Ardalan & Denis Sarazhinsky & Nemanja Dobrota & Aleksandar Stevanovic, 2024. "Investigation of Analyzable Solutions for Left-Turn-Centered Congestion Problems in Urban Grid Networks," Sustainability, MDPI, vol. 16(11), pages 1-24, June.
    6. Mohammed Saleh Alfawzan & Ahmad Aftab, 2022. "Efficiency Assessment of New Signal Timing in Saudi Arabia Implementing Flashing Green Interval Complimented with Law Enforcement Cameras," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    7. Sun, Bin & Zhang, Qijun & Wei, Ning & Jia, Zhenyu & Li, Chunming & Mao, Hongjun, 2022. "The energy flow of moving vehicles for different traffic states in the intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Angel Jaramillo-Alcazar & Jaime Govea & William Villegas-Ch, 2023. "Advances in the Optimization of Vehicular Traffic in Smart Cities: Integration of Blockchain and Computer Vision for Sustainable Mobility," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    9. Muhammad Safdar & Arshad Jamal & Hassan M. Al-Ahmadi & Muhammad Tauhidur Rahman & Meshal Almoshaogeh, 2022. "Analysis of the Influential Factors towards Adoption of Car-Sharing: A Case Study of a Megacity in a Developing Country," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    10. Moneim Massar & Imran Reza & Syed Masiur Rahman & Sheikh Muhammad Habib Abdullah & Arshad Jamal & Fahad Saleh Al-Ismail, 2021. "Impacts of Autonomous Vehicles on Greenhouse Gas Emissions—Positive or Negative?," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    11. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad Jamal & Muhammad Tauhidur Rahman & Hassan M. Al-Ahmadi & Irfan Ullah & Muhammad Zahid, 2020. "Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    2. Elżbieta Macioszek & Agata Kurek, 2020. "The Use of a Park and Ride System—A Case Study Based on the City of Cracow (Poland)," Energies, MDPI, vol. 13(13), pages 1-26, July.
    3. Chang, Tang-Hsien & Sun, Guey-Yin, 2004. "Modeling and optimization of an oversaturated signalized network," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 687-707, September.
    4. Şahan, Duygu & Tuna, Okan, 2018. "Environmental innovation of transportation sector in OECD countries," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), The Road to a Digitalized Supply Chain Management: Smart and Digital Solutions for Supply Chain Management. Proceedings of the Hamburg International C, volume 25, pages 157-170, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    5. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    6. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    7. Yunqiang Xue & Hongzhi Guan & Jonathan Corey & Bing Zhang & Hai Yan & Yan Han & Huanmei Qin, 2017. "Transport Emissions and Energy Consumption Impacts of Private Capital Investment in Public Transport," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    8. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    9. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    10. Raval, Khushi Jatinkumar & Jadav, Nilesh Kumar & Rathod, Tejal & Tanwar, Sudeep & Vimal, Vrince & Yamsani, Nagendar, 2024. "A survey on safeguarding critical infrastructures: Attacks, AI security, and future directions," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    11. Min Li & Dijia Luo & Bilong Liu & Xilong Zhang & Zhen Liu & Mengshan Li, 2022. "Arterial Coordination Control Optimization Based on AM–BAND–PBAND Model," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    12. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    13. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    14. Natalia Distefano & Salvatore Leonardi, 2022. "Evaluation of the Effectiveness of Traffic Calming Measures by SPEIR Methodology: Framework and Case Studies," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    15. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    16. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    17. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    18. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
    19. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    20. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7394-:d:410973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.