IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5870-d387635.html
   My bibliography  Save this article

Assessing the Economic Viability of an Animal Byproduct Rendering Plant: Case Study of a Slaughterhouse in Greece

Author

Listed:
  • Dimitris Zagklis

    (Green Technologies Ltd., 5 Ellinos Stratiotou Str., 26223 Patras, Greece)

  • Eva Konstantinidou

    (School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous, 26335 Patras, Greece)

  • Constantina Zafiri

    (Green Technologies Ltd., 5 Ellinos Stratiotou Str., 26223 Patras, Greece
    School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous, 26335 Patras, Greece)

  • Michael Kornaros

    (Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Street, 26504 Patras, Greece)

Abstract

Continuous human population growth has led to increased livestock production and hence large quantities of animal byproducts. One of the oldest and most efficient animal byproducts processing techniques is rendering, which facilitates the recovery of resources in the form of fat and protein flour. The purpose of this study is to provide data for the feasibility of rendering as a treatment method. The case of a Greek slaughterhouse is presented, regarding its animal byproduct treatment process through rendering and incineration. Three different waste management scenarios are compared, with rendering proving to have a lower operational cost (€51.80/ton) compared to incineration (€74.10/ton), and rendering followed by incineration (€72.13/ton). The rendering process is then compared with other established animal byproduct treatment methods like composting and anaerobic digestion through the analytic hierarchy process, in terms of environmental, economic, and technological efficiency, with rendering (having a final score of 72%) proving once again superior compared to composting (with a score of 54%), and anaerobic digestion (with a score of 55%).

Suggested Citation

  • Dimitris Zagklis & Eva Konstantinidou & Constantina Zafiri & Michael Kornaros, 2020. "Assessing the Economic Viability of an Animal Byproduct Rendering Plant: Case Study of a Slaughterhouse in Greece," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5870-:d:387635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    2. Alexandra Jurgilevich & Traci Birge & Johanna Kentala-Lehtonen & Kaisa Korhonen-Kurki & Janna Pietikäinen & Laura Saikku & Hanna Schösler, 2016. "Transition towards Circular Economy in the Food System," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    3. Babatunde O. Alao & Andrew B. Falowo & Amanda Chulayo & Voster Muchenje, 2017. "The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. António A. Martins & Soraia Andrade & Daniela Correia & Elisabete Matos & Nídia S. Caetano & Teresa M. Mata, 2021. "Valorization of Agro-Industrial Residues: Bioprocessing of Animal Fats to Reduce Their Acidity," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    2. Muñoz, P. & González-Menorca, C. & Sánchez-Vázquez, R. & Sanchez-Prieto, J. & Fraile Del Pozo, A., 2024. "Determining biomethane potential from animal-source industry wastes by anaerobic digestion: A case study from La rioja, Spain," Renewable Energy, Elsevier, vol. 235(C).
    3. Ankita Bhowmik & Shantanu Bhunia & Anupam Debsarkar & Rambilash Mallick & Malancha Roy & Joydeep Mukherjee, 2021. "Development of a Novel Helical-Ribbon Mixer Dryer for Conversion of Rural Slaughterhouse Wastes to an Organic Fertilizer and Implications in the Rural Circular Economy," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianne Ryghaug & Michael Ornetzeder & Tomas Moe Skjølsvold & William Throndsen, 2019. "The Role of Experiments and Demonstration Projects in Efforts of Upscaling: An Analysis of Two Projects Attempting to Reconfigure Production and Consumption in Energy and Mobility," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    2. Karna Ramachandraiah, 2021. "Potential Development of Sustainable 3D-Printed Meat Analogues: A Review," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    3. Henrik Haller & Anna-Sara Fagerholm & Peter Carlsson & Wilhelm Skoglund & Paul van den Brink & Itai Danielski & Kristina Brink & Murat Mirata & Oskar Englund, 2022. "Towards a Resilient and Resource-Efficient Local Food System Based on Industrial Symbiosis in Härnösand: A Swedish Case Study," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    4. Priyadarshi Maurya & Mrinalini Goswami & Sunil Nautiyal & Satya Prakash & Anil Kumar Gupta & A Sathish, 2024. "Resource Flow in Peri-urban Agroecosystem: an Assessment from Circular Economy Perspective," Circular Economy and Sustainability, Springer, vol. 4(2), pages 1093-1114, June.
    5. Catarina Lourenço-Lopes & Maria Fraga-Corral & Cecilia Jimenez-Lopez & Antia G. Pereira & Paula Garcia-Oliveira & Maria Carpena & Miguel A. Prieto & Jesus Simal-Gandara, 2020. "Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach," Resources, MDPI, vol. 9(9), pages 1-30, August.
    6. Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Arvind Bhardwaj & Mohamed Rafik Noor Mohamed Qureshi & Nawaf Khan, 2022. "Leveraging the Dynamics of Food Supply Chains towards Avenues of Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    7. Saurabh Ardra & Mukesh Kumar Barua, 2023. "Inclusion of circular economy practices in the food supply chain: Challenges and possibilities for reducing food wastage in emerging economies like India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 13825-13858, December.
    8. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    9. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    10. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.
    11. Aschemann-Witzel, Jessica & Stangherlin, Isadora Do Carmo, 2021. "Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    12. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., . "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2).
    13. Yamna Erraach & Fatma Jaafer & Ivana Radić & Mechthild Donner, 2021. "Sustainability Labels on Olive Oil: A Review on Consumer Attitudes and Behavior," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    14. Haniyeh Shariatmadary & Sabine O’Hara & Rebecca Graham & Marian Stuiver, 2023. "Are Food Hubs Sustainable? An Analysis of Social and Environmental Objectives of U.S. Food Hubs," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    15. Mehmet Balcilar & Evrim Toren, 2021. "The Time-Varying Effect of Asset Prices on Turkey’s Circular Economy," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    16. Denise Reike & Marko P. Hekkert & Simona O. Negro, 2023. "Understanding circular economy transitions: The case of circular textiles," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1032-1058, March.
    17. Aogán Delaney & Tom Evans & John McGreevy & Jordan Blekking & Tyler Schlachter & Kaisa Korhonen-Kurki & Peter A. Tamás & Todd A. Crane & Hallie Eakin & Wiebke Förch & Lindsey Jones & Donald R. Nelson , 2018. "Governance of food systems across scales in times of social-ecological change: a review of indicators," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 287-310, April.
    18. Josephine Mylan & Helen Holmes & Jessica Paddock, 2016. "Re-Introducing Consumption to the ‘Circular Economy’: A Sociotechnical Analysis of Domestic Food Provisioning," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    19. Julia Francesca Wünsche & Fredrik Fernqvist, 2022. "The Potential of Blockchain Technology in the Transition towards Sustainable Food Systems," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    20. Andrew Spring & Erin Nelson & Irena Knezevic & Patricia Ballamingie & Alison Blay-Palmer, 2021. "Special Issue “Levering Sustainable Food Systems to Address Climate Change (Pandemics and Other Shocks and Hazards): Possible Transformations”," Sustainability, MDPI, vol. 13(15), pages 1-6, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5870-:d:387635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.