IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2599-d228587.html
   My bibliography  Save this article

Inter-University Sustainability Benchmarking for Canadian Higher Education Institutions: Water, Energy, and Carbon Flows for Technical-Level Decision-Making

Author

Listed:
  • Abdulaziz Alghamdi

    (School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V 1V7, Canada)

  • Husnain Haider

    (Civil Engineering Department, College of Engineering, Qassim University, Buraydah, Qassim 52571, Saudi Arabia)

  • Kasun Hewage

    (School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V 1V7, Canada)

  • Rehan Sadiq

    (School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V 1V7, Canada)

Abstract

The education sector is one of the major contributors to the total greenhouse gas (GHG) emissions in Canada, i.e., 16% of total emissions among 11 sectors. Canadian higher education institutions (HEIs) consume around 60% of the total energy fed to the educational sector. Existing tools holistically cover a wide array of functions to assess the sustainability of HEIs. The infrastructure (engineered) systems are the pivotal units responsible for the majority of energy and water consumption and may have been built, retrofitted, or replaced at different times using different materials and technologies. Consequently, infrastructures have varying efficiency, designs, building envelopes, and environmental impacts. For technical-level decision making for improving the engineered systems, HEIs need to be benchmarked on the basis of their water, energy, and carbon flows. A methodology is developed for sustainability assessment of 34 Canadian HEIs that are classified into small, medium, and large sizes based on their number of full-time equivalent students (FTE). Energy, water consumption, number of students, and floor area is measured in different units and are, thus, normalized. The study revealed that the energy source was the primary factor affecting the sustainability performance of an institution. The analysis also revealed that small-sized institutions outperformed medium-to-large-sized institutions.

Suggested Citation

  • Abdulaziz Alghamdi & Husnain Haider & Kasun Hewage & Rehan Sadiq, 2019. "Inter-University Sustainability Benchmarking for Canadian Higher Education Institutions: Water, Energy, and Carbon Flows for Technical-Level Decision-Making," Sustainability, MDPI, vol. 11(9), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2599-:d:228587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Calker, K.J. & Berentsen, P.B.M. & Romero, C. & Giesen, G.W.J. & Huirne, R.B.M., 2006. "Development and application of a multi-attribute sustainability function for Dutch dairy farming systems," Ecological Economics, Elsevier, vol. 57(4), pages 640-658, June.
    2. Altan, Hasim, 2010. "Energy efficiency interventions in UK higher education institutions," Energy Policy, Elsevier, vol. 38(12), pages 7722-7731, December.
    3. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    4. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    5. Ward, Ian & Ogbonna, Anthony & Altan, Hasim, 2008. "Sector review of UK higher education energy consumption," Energy Policy, Elsevier, vol. 36(8), pages 2929-2939, August.
    6. Anne-Kathrin Faust & Andrea Baranzini, 2014. "The economic performance of Swiss drinking water utilities," Journal of Productivity Analysis, Springer, vol. 41(3), pages 383-397, June.
    7. Florian Findler & Norma Schönherr & Rodrigo Lozano & Barbara Stacherl, 2018. "Assessing the Impacts of Higher Education Institutions on Sustainable Development—An Analysis of Tools and Indicators," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuyuan Xue & Hongbo Liu & Qinxiao Zhang & Jingxin Wang & Jilin Fan & Xia Zhou, 2019. "The Impact Assessment of Campus Buildings Based on a Life Cycle Assessment–Life Cycle Cost Integrated Model," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    2. Ali M. Al-Bahi & Mohamed S. Abd-Elwahed & Abdelfattah Y. Soliman, 2021. "Implementation of Sustainability Indicators in Engineering Education Using a Combined Balanced Scorecard and Quality Function Deployment Approaches," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    3. Amila Omazic & Bernd Markus Zunk, 2021. "Semi-Systematic Literature Review on Sustainability and Sustainable Development in Higher Education Institutions," Sustainability, MDPI, vol. 13(14), pages 1-45, July.
    4. Miguel Ángel Pardo & Ricardo Cobacho & Luis Bañón, 2020. "Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    5. Denner Deda & Helena Gervásio & Margarida J. Quina, 2023. "Bibliometric Analysis and Benchmarking of Life Cycle Assessment of Higher Education Institutions," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    6. Abdulaziz Alghamdi & Guangji Hu & Husnain Haider & Kasun Hewage & Rehan Sadiq, 2020. "Benchmarking of Water, Energy, and Carbon Flows in Academic Buildings: A Fuzzy Clustering Approach," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    7. Ligia Isabel Estrada-Vidal & María del Carmen Olmos-Gómez & Rafael López-Cordero & Francisca Ruiz-Garzón, 2020. "The Differences across Future Teachers Regarding Attitudes on Social Responsibility for Sustainable Development," IJERPH, MDPI, vol. 17(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadud, Zia & Royston, Sarah & Selby, Jan, 2019. "Modelling energy demand from higher education institutions: A case study of the UK," Applied Energy, Elsevier, vol. 233, pages 816-826.
    2. Lo, Kevin, 2013. "Energy conservation in China's higher educationinstitutions," Energy Policy, Elsevier, vol. 56(C), pages 703-710.
    3. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    4. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    5. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    6. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    7. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    8. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    9. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    10. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    11. Wang, Chengchao & Yang, Yusheng & Zhang, Yaoqi, 2012. "Rural household livelihood change, fuelwood substitution, and hilly ecosystem restoration: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2475-2482.
    12. Lee, Wen-Shing & Kung, Chung-Kuan, 2011. "Using climate classification to evaluate building energy performance," Energy, Elsevier, vol. 36(3), pages 1797-1801.
    13. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    14. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    15. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    16. Hellwig, Michael & Polk, Andreas, 2021. "Do political links influence water prices? Determinants of water prices in Germany," Utilities Policy, Elsevier, vol. 70(C).
    17. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    18. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    19. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    20. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2599-:d:228587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.