IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p838-d203857.html
   My bibliography  Save this article

Critical Infrastructures: The Operational Environment in Cases of Severe Disruption

Author

Listed:
  • Ossi Heino

    (Research, Development and Innovation, Police University College, P.O. Box 123, FI-33721 Tampere, Finland)

  • Annina Takala

    (Faculty of Built Environment, Tampere University, P.O. Box 600, FI-33014 Tampere, Finland)

  • Pirjo Jukarainen

    (Research, Development and Innovation, Police University College, P.O. Box 123, FI-33721 Tampere, Finland)

  • Joanna Kalalahti

    (Research, Development and Innovation, Police University College, P.O. Box 123, FI-33721 Tampere, Finland)

  • Tuula Kekki

    (Research and Development, The Finnish National Rescue Association (SPEK), Ratamestarinkatu 11, 00520 Helsinki, Finland)

  • Pekka Verho

    (Faculty of Information Technology and Communication Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland)

Abstract

The functioning and resilience of modern societies have become more and more dependent on critical infrastructures. Severe disturbance to critical infrastructure is likely to reveal chaotic operational conditions, in which infrastructure service providers, emergency services, police, municipalities, and other key stakeholders must act effectively to minimize damages and restore normal operations. This paper aims to better understand this kind of operational environment resulting from, for example, a terrorist attack. It emphasizes mutual interdependencies among key stakeholders in such situations. The empirical contribution is based on observations from a workshop, in which participants representing the critical services and infrastructures in Finland discussed in thematic groups. Two scenarios guided the workshop discussions; nationwide electricity grid disruption and presumably intentionally contaminated water supply in a city. The results indicate that more attention should be paid to the interdependencies between critical infrastructures, as well as to the latent vulnerabilities hidden inside the systems. Furthermore, producing security seems to require continuous interaction and creation of meanings between extremely different actors and logics. This implies a need for changes in thinking, particularly concerning the ability to define problems across conventional administrative structures, geographical boundaries and conferred powers.

Suggested Citation

  • Ossi Heino & Annina Takala & Pirjo Jukarainen & Joanna Kalalahti & Tuula Kekki & Pekka Verho, 2019. "Critical Infrastructures: The Operational Environment in Cases of Severe Disruption," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:838-:d:203857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    2. Ross Williams, 2013. "Introduction," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 46(4), pages 460-461, December.
    3. Gianluca Pescaroli & David Alexander, 2016. "Critical infrastructure, panarchies and the vulnerability paths of cascading disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 175-192, May.
    4. Martin Hand & Elizabeth Shove & Dale Southerton, 2005. "Explaining Showering: A Discussion of the Material, Conventional, and Temporal Dimensions of Practice," Sociological Research Online, , vol. 10(2), pages 101-113, July.
    5. Monroe, Jacob & Ramsey, Elizabeth & Berglund, Emily, 2018. "Allocating countermeasures to defend water distribution systems against terrorist attack," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 37-51.
    6. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    7. M. D. Ginsberg & V. F. Hock, 2004. "Terrorism and security of water distribution systems: A primer," Defense & Security Analysis, Taylor & Francis Journals, vol. 20(4), pages 373-380, December.
    8. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    9. Polinpapilinho F. Katina & Patrick T. Hester, 2013. "Systemic determination of infrastructure criticality," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 9(3), pages 211-225.
    10. Arjen Boin & Denis Smith, 2006. "Terrorism and Critical Infrastructures: Implications for Public--Private Crisis Management," Public Money & Management, Taylor & Francis Journals, vol. 26(5), pages 295-304, November.
    11. Patricia Romero-Lankao & Daniel M. Gnatz & Olga Wilhelmi & Mary Hayden, 2016. "Urban Sustainability and Resilience: From Theory to Practice," Sustainability, MDPI, vol. 8(12), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    2. Marko Keskinen & Suvi Sojamo & Olli Varis, 2019. "Enhancing Security, Sustainability and Resilience in Energy, Food and Water," Sustainability, MDPI, vol. 11(24), pages 1-8, December.
    3. Byoungjik Park & Yangkyun Kim & Jin Ouk Park & Ohk Kun Lim, 2023. "Jet Flame Risk Analysis for Safe Response to Hydrogen Vehicle Accidents," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    4. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    5. Ossi Heino & Joanna Kalalahti, 2021. "Securing Operational Capability for Exceptional Circumstances: How Do Professional First Responders Respond to the Unexpected?," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    6. Olga Bucovetchi & Alexandru Georgescu & Dorel Badea & Radu D. Stanciu, 2019. "Agent-Based Modeling (ABM): Support for Emphasizing the Air Transport Infrastructure Dependence of Space Systems," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    7. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Bucovetchi & Alexandru Georgescu & Dorel Badea & Radu D. Stanciu, 2019. "Agent-Based Modeling (ABM): Support for Emphasizing the Air Transport Infrastructure Dependence of Space Systems," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    2. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    3. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    4. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    5. Hiroki Noguchi & Takuma Nishizawa & Masaaki Fuse, 2021. "A method to characterize the social cascading damage processes of disasters using media information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 231-247, May.
    6. Brunella Caroleo & Enrico Palumbo & Michele Osella & Antonio Lotito & Giuseppe Rizzo & Enrico Ferro & Antonio Attanasio & Silvia Chiusano & Giulio Zuccaro & Mattia Leone & Daniela De Gregorio, 2018. "A Knowledge-Based Multi-Criteria Decision Support System Encompassing Cascading Effects for Disaster Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1469-1498, September.
    7. Stefan Greiving & Mark Fleischhauer & Christian D. León & Leonie Schödl & Gisela Wachinger & Iris Katherine Quintana Miralles & Benjamín Prado Larraín, 2021. "Participatory Assessment of Multi Risks in Urban Regions—The Case of Critical Infrastructures in Metropolitan Lima," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    8. Philip M. Kruse & Hanna C. Schmitt & Stefan Greiving, 2021. "Systemic criticality—a new assessment concept improving the evidence basis for CI protection," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    9. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    10. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    11. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    12. Danielsson, Erna & Nyhlén, Jon & Olausson, Pär M., 2020. "Strategic planning for power shortages," Energy Policy, Elsevier, vol. 137(C).
    13. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    14. Igor Linkov & Benjamin Trump & Greg Kiker, 2022. "Diversity and inclusiveness are necessary components of resilient international teams," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    15. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
    16. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    17. Pilar Jiménez-Medina & Andrés Artal-Tur & Noelia Sánchez-Casado, 2021. "Tourism Business, Place Identity, Sustainable Development, and Urban Resilience: A Focus on the Sociocultural Dimension," International Regional Science Review, , vol. 44(1), pages 170-199, January.
    18. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    19. Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
    20. Laura M. Canevari‐Luzardo & Frans Berkhout & Mark Pelling, 2020. "A relational view of climate adaptation in the private sector: How do value chain interactions shape business perceptions of climate risk and adaptive behaviours?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 432-444, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:838-:d:203857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.