IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6499-d288330.html
   My bibliography  Save this article

Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China

Author

Listed:
  • Evans Asenso

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Luyong Zhang

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Lingmao Tang

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Fuseini Issaka

    (College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China)

  • Kai Tian

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Jiuhao Li

    (College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Lian Hu

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract

Several tillage and planting methods have been proposed to enhance the soil bulk density, biological community, and grain yield of rice. In this work, we present the impact of plowing methods with different rice crop establishment approaches, i.e., moldboard plowing with mechanical transplanting (MPMT), rotary tillage with mechanical transplanting (RTMT), moldboard plowing with direct seeding (MPDS), and rotary tillage with direct seeding (RTDS), on soil bulk density, microbial community, enzymatic activities, and grain yield of ratoon rice (RR). The results showed that MPDS improved soil bulk density in 0–30 cm depth in both years and both harvesting times (1H: 1st harvest and 2H: 2nd harvest). The results also showed that microbial community significantly improved under MPDS compared to the other treatments in both years and in 1H and 2H. Additionally, enzymatic activities showed a positive effect under MPDS in both years and in 1H and 2H. MPDS subsequently improved rice grain yield by 18.05% and 17.27% in 2017 (1H and 2H), and 14.86% and 18.64% in 2018 (1H and 2H), respectively. In conclusion, MPDS appears to be a more suitable approach to obtaining high soil eminence and health, as well as sustainable RR production.

Suggested Citation

  • Evans Asenso & Luyong Zhang & Lingmao Tang & Fuseini Issaka & Kai Tian & Jiuhao Li & Lian Hu, 2019. "Moldboard Plowing with Direct Seeding Improves Soil Properties and Sustainable Productivity in Ratoon Rice Farmland in Southern China," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6499-:d:288330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    2. Jiang, Qingwei & Wang, Weiqin & Chen, Qian & Peng, Shaobing & Huang, Jianliang & Cui, Kehui & Nie, Lixiao, 2016. "Response of first flood irrigation timing after rice dry-direct-seeding: Productivity and greenhouse gas emissions in Central China," Agricultural Water Management, Elsevier, vol. 177(C), pages 241-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    2. Ren Hu & Zijuan Ding & Tingyu Li & Dingyue Zhang & Yingbing Tian & Yuxian Cao & Jun Hou, 2022. "Optimizing Nitrogen Application for Chinese Ratoon Rice Based on Yield and Reactive Nitrogen Loss," Agriculture, MDPI, vol. 12(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    3. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    4. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    5. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    6. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    7. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    8. Xin Dong & Tianyi Zhang & Xiaoguang Yang & Tao Li, 2023. "Breeding priorities for rice adaptation to climate change in Northeast China," Climatic Change, Springer, vol. 176(6), pages 1-19, June.
    9. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    10. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    11. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    12. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    13. Ian A. Navarrete & Victor B. Asio, 2014. "Research productivity in soil science in the Philippines," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 261-272, July.
    14. Aimé Sévérin Kima & Etienne Kima & Bernard Bacyé & Paule A. W. Ouédraogo & Ousmane Traore & Seydou Traore & Hervé Nandkangré & Wen-Guey Chung & Yu-Min Wang, 2020. "Evaluating Supplementary Water Methodology with Saturated Soil Irrigation for Yield and Water Productivity Improvement in Semi-Arid Rainfed Rice System, Burkina Faso," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    15. Thakur, Amod K. & Mohanty, Rajeeb K. & Singh, Rajbir & Patil, Dhiraj U., 2015. "Enhancing water and cropping productivity through Integrated System of Rice Intensification (ISRI) with aquaculture and horticulture under rainfed conditions," Agricultural Water Management, Elsevier, vol. 161(C), pages 65-76.
    16. Silva, João Vasco & Reidsma, Pytrik & Lourdes Velasco, Ma. & Laborte, Alice G. & van Ittersum, Martin K., 2018. "Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels," Agricultural Systems, Elsevier, vol. 165(C), pages 55-70.
    17. Lankford, Bruce A., 2023. "Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    19. Anjali Chaudhary & V. Venkatramanan & Ajay Kumar Mishra & Sheetal Sharma, 2023. "Agronomic and Environmental Determinants of Direct Seeded Rice in South Asia," Circular Economy and Sustainability,, Springer.
    20. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6499-:d:288330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.