IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6362-d286281.html
   My bibliography  Save this article

Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity

Author

Listed:
  • Rosario Carbone

    (Department of Information Engineering, Infrastructures and Sustainable Energy, 89122 Reggio Calabria, Italy)

  • Concettina Marino

    (Department of Civil, Energetic, Environmental and Material Engineering, 89122 Reggio Calabria, Italy)

  • Antonino Nucara

    (Department of Civil, Energetic, Environmental and Material Engineering, 89122 Reggio Calabria, Italy)

  • Maria Francesca Panzera

    (Department of Civil, Energetic, Environmental and Material Engineering, 89122 Reggio Calabria, Italy)

  • Matilde Pietrafesa

    (Department of Civil, Energetic, Environmental and Material Engineering, 89122 Reggio Calabria, Italy)

Abstract

The analysis here presented investigates the influence of electrical load on the operational performances of a plant for hydrogen production from solar energy and its conversion in electricity via a fuel cell. The plant is an actual one, currently under construction, in Reggio Calabria (Italy), at the site of the Mediterranean university campus; it is composed of a Renewable Energy Source (RES) section (photovoltaic panels), a hydrogen production section, and a fuel cell power section feeding the electrical energy demand of the load. Two different load configurations have been analysed and simulations have been carried out through Homer TM simulation code. Results allow interesting conclusions regarding the plant operation to be drawn. The study could have a remarkable role in supporting further research activities aimed at the assessment of the optimal configuration of this type of pioneering plants, designed for feeding electrical loads, possibly, in a self-sufficient way.

Suggested Citation

  • Rosario Carbone & Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2019. "Electric Load Influence on Performances of a Composite Plant for Hydrogen Production from RES and its Conversion in Electricity," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6362-:d:286281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
    2. López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Narayanan, Arun & Mets, Kevin & Strobbe, Matthias & Develder, Chris, 2019. "Feasibility of 100% renewable energy-based electricity production for cities with storage and flexibility," Renewable Energy, Elsevier, vol. 134(C), pages 698-709.
    5. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    6. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    7. Christina Wulf & Martin Kaltschmitt, 2018. "Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    8. Krajačić, Goran & Lončar, Dražen & Duić, Neven & Zeljko, Mladen & Lacal Arántegui, Roberto & Loisel, Rodica & Raguzin, Igor, 2013. "Analysis of financial mechanisms in support to new pumped hydropower storage projects in Croatia," Applied Energy, Elsevier, vol. 101(C), pages 161-171.
    9. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    10. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    11. Raj, Arun S. & Ghosh, Prakash C., 2012. "Standalone PV-diesel system vs. PV-H2 system: An economic analysis," Energy, Elsevier, vol. 42(1), pages 270-280.
    12. Hvelplund, Frede, 2006. "Renewable energy and the need for local energy markets," Energy, Elsevier, vol. 31(13), pages 2293-2302.
    13. Gonçalves da Silva, C., 2010. "Renewable energies: Choosing the best options," Energy, Elsevier, vol. 35(8), pages 3179-3193.
    14. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    15. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa & Alfredo Pudano, 2020. "Economic Comparison Between a Stand-Alone and a Grid Connected PV System vs. Grid Distance," Energies, MDPI, vol. 13(15), pages 1-22, July.
    2. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    3. Marino, C. & Nucara, A. & Pietrafesa, M. & Pudano, A., 2013. "An energy self-sufficient public building using integrated renewable sources and hydrogen storage," Energy, Elsevier, vol. 57(C), pages 95-105.
    4. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    6. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    7. Blokhuis, Erik & Advokaat, Bart & Schaefer, Wim, 2012. "Assessing the performance of Dutch local energy companies," Energy Policy, Elsevier, vol. 45(C), pages 680-690.
    8. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
    9. Gkanas, Evangelos I. & Khzouz, Martin & Panagakos, Grigorios & Statheros, Thomas & Mihalakakou, Giouli & Siasos, Gerasimos I. & Skodras, Georgios & Makridis, Sofoklis S., 2018. "Hydrogenation behavior in rectangular metal hydride tanks under effective heat management processes for green building applications," Energy, Elsevier, vol. 142(C), pages 518-530.
    10. Peláez-Peláez, Sofía & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Rosales, Ana-Esther & Rosales-Asensio, Enrique, 2021. "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, Elsevier, vol. 224(C).
    11. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    12. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
    13. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    16. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    17. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    18. Jiang, Zhujun & Lin, Boqiang, 2014. "The perverse fossil fuel subsidies in China—The scale and effects," Energy, Elsevier, vol. 70(C), pages 411-419.
    19. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    20. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6362-:d:286281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.