IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5593-d275211.html
   My bibliography  Save this article

Investigation of Energy Efficient Retrofit HVAC Systems for a University: Case Study

Author

Listed:
  • Jayraj Ligade

    (Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA)

  • Ali Razban

    (Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, IN 46202, USA)

Abstract

We did energy efficient retrofits for the Indiana University Purdue University—Indianapolis Health Science Building using the eQuest energy software. The current dual-fan dual-duct (DFDD) system is 41 years old and has a higher energy utilization index (EUI) than the national average for similar building types. The baseline model with the DFDD system was compared with the actual electrical consumption. Then, two energy efficiency measures (EEMs) were applied to the model. The first EEM was ‘DFDD system with chilled water and steam heating,’ and the second EEM was ‘single-duct variable air volume (VAV) with chilled water and electric reheat.’ After comparative simulations and analyses, it was determined that the ‘single duct VAV with chilled water and electric reheat’ was the most energy efficient and saved 28% in utility costs. The recommendation given to the facility services was to change the current DFDD system to the single-duct VAV system. The single-duct VAV system will save energy and create additional space above the ceiling after the heating duct is removed.

Suggested Citation

  • Jayraj Ligade & Ali Razban, 2019. "Investigation of Energy Efficient Retrofit HVAC Systems for a University: Case Study," Sustainability, MDPI, vol. 11(20), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5593-:d:275211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Belyanovskaya & Miroslav Rimár & Roman D. Lytovchenko & Miroslav Variny & Kostyantyn M. Sukhyy & Oleksandr O. Yeromin & Mikhailo P. Sykhyy & Elena M. Prokopenko & Irina V. Sukha & Mikhailo V. Gu, 2020. "Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    2. Marek Borowski & Piotr Mazur & Sławosz Kleszcz & Klaudia Zwolińska, 2020. "Energy Monitoring in a Heating and Cooling System in a Building Based on the Example of the Turówka Hotel," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Mohammad B. Hamida & Wahhaj Ahmed & Muhammad Asif & Faris Abdullah Almaziad, 2020. "Techno-Economic Assessment of Energy Retrofitting Educational Buildings: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    4. Faouzan Abdulaziz Alfaoyzan & Radwan A. Almasri, 2023. "Benchmarking of Energy Consumption in Higher Education Buildings in Saudi Arabia to Be Sustainable: Sulaiman Al-Rajhi University Case," Energies, MDPI, vol. 16(3), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    2. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    3. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    4. Pereira, Júlia & Rivero, Cristina Camacho & Gomes, M. Glória & Rodrigues, A. Moret & Marrero, Madelyn, 2021. "Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate," Energy, Elsevier, vol. 233(C).
    5. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    6. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    7. Karthick, A. & Kalidasa Murugavel, K. & Kalaivani, L., 2018. "Performance analysis of semitransparent photovoltaic module for skylights," Energy, Elsevier, vol. 162(C), pages 798-812.
    8. Michalak, Piotr, 2014. "The simple hourly method of EN ISO 13790 standard in Matlab/Simulink: A comparative study for the climatic conditions of Poland," Energy, Elsevier, vol. 75(C), pages 568-578.
    9. Kwong, Qi Jie & Ali, Yusoff, 2011. "A review of energy efficiency potentials in tropical buildings – Perspective of enclosed common areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4548-4553.
    10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    11. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
    12. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    13. Kostic, Miomir & Djokic, Lidija, 2009. "Recommendations for energy efficient and visually acceptable street lighting," Energy, Elsevier, vol. 34(10), pages 1565-1572.
    14. Trifunovic, J. & Mikulovic, J. & Djurisic, Z. & Djuric, M. & Kostic, M., 2009. "Reductions in electricity consumption and power demand in case of the mass use of compact fluorescent lamps," Energy, Elsevier, vol. 34(9), pages 1355-1363.
    15. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    16. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    17. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    18. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    19. Henriqueta Teixeira & Maria da Glória Gomes & António Moret Rodrigues & Júlia Pereira, 2021. "In-Service Thermal and Luminous Performance Monitoring of a Refurbished Building with Solar Control Films on the Glazing System," Energies, MDPI, vol. 14(5), pages 1-23, March.
    20. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5593-:d:275211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.