IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013311.html
   My bibliography  Save this article

Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate

Author

Listed:
  • Pereira, Júlia
  • Rivero, Cristina Camacho
  • Gomes, M. Glória
  • Rodrigues, A. Moret
  • Marrero, Madelyn

Abstract

The incorporation or the replacement of materials in buildings may decrease the energy use during the operational stage but increase the embodied energy in a building's life cycle. In this study, three different solar control films (SCFs A, B and C) with application on the existing windows of a building are investigated through an energy, environmental and economic perspective over a defined life cycle period. The full replacement of the existing window with a new one is also analyzed as an alternative retrofitting solution. Retrofitting solutions with higher light-to-solar gain ratios showed higher energy savings during the use stage by decreasing the solar gains in a higher proportion than the decrease of the visible transmittance. The best retrofitting solution, SCF C, showed a life cycle energy (LCE) (embodied plus operational energy) and a carbon footprint of 4447 MJ/m2/40 y and 380 kgCO2eq/m2/40 y, respectively, whereas the least performant solution, new window, showed a LCE 1.5 times higher than the average of the three SCFs. The higher LCE value of the new window was found to be related to the higher value of the embodied energy when compared to that of the three SCFs (∼9 times higher than the average of the films).

Suggested Citation

  • Pereira, Júlia & Rivero, Cristina Camacho & Gomes, M. Glória & Rodrigues, A. Moret & Marrero, Madelyn, 2021. "Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013311
    DOI: 10.1016/j.energy.2021.121083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madelyn Marrero & Antonio Ramirez-De-Arellano, 2010. "The building cost system in Andalusia: application to construction and demolition waste management," Construction Management and Economics, Taylor & Francis Journals, vol. 28(5), pages 495-507.
    2. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    3. Tarantini, Mario & Loprieno, Arianna Dominici & Porta, Pier Luigi, 2011. "A life cycle approach to Green Public Procurement of building materials and elements: A case study on windows," Energy, Elsevier, vol. 36(5), pages 2473-2482.
    4. Li, Danny H.W & Lam, Joseph C & Lau, Chris C.S & Huan, T.W, 2004. "Lighting and energy performance of solar film coating in air-conditioned cellular offices," Renewable Energy, Elsevier, vol. 29(6), pages 921-937.
    5. Asdrubali, F. & Baggio, P. & Prada, A. & Grazieschi, G. & Guattari, C., 2020. "Dynamic life cycle assessment modelling of a NZEB building," Energy, Elsevier, vol. 191(C).
    6. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.
    7. Ali Bahadori-Jahromi & Abdulazeez Rotimi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    2. Silvia Ruggiero & Marco Iannantuono & Anastasia Fotopoulou & Dimitra Papadaki & Margarita Niki Assimakopoulos & Rosa Francesca De Masi & Giuseppe Peter Vanoli & Annarita Ferrante, 2022. "Multi-Objective Optimization for Cooling and Interior Natural Lighting in Buildings for Sustainable Renovation," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    3. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    4. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
    5. Xu Chen & Saihong Zhu & Tianyi Chen, 2022. "Thermal Parameters Calibration and Energy-Saving Evaluation of Spectral Selective Absorption Film Coated Glazing System Based on Heat Transfer Simulation," Energies, MDPI, vol. 15(8), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    2. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    3. Henriqueta Teixeira & Maria da Glória Gomes & António Moret Rodrigues & Júlia Pereira, 2021. "In-Service Thermal and Luminous Performance Monitoring of a Refurbished Building with Solar Control Films on the Glazing System," Energies, MDPI, vol. 14(5), pages 1-23, March.
    4. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    5. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
    6. Suzanne Benn & Damien Giurco & Paul James Brown & Renu Agarwal, 2014. "Towards Responsible Steel: Preliminary Insights," Resources, MDPI, vol. 3(1), pages 1-16, March.
    7. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    8. Carmen María Calama-González & Ángel Luis León-Rodríguez & Rafael Suárez, 2019. "Daylighting Performance of Solar Control Films for Hospital Buildings in a Mediterranean Climate," Energies, MDPI, vol. 12(3), pages 1-19, February.
    9. Jolien Grandia & Dylan Voncken, 2019. "Sustainable Public Procurement: The Impact of Ability, Motivation, and Opportunity on the Implementation of Different Types of Sustainable Public Procurement," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    10. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Debora Anelli, 2020. "A Feasibility Analysis of The Refurbishment Investments in The Italian Residential Market," Sustainability, MDPI, vol. 12(6), pages 1-20, March.
    11. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    12. Juan Pablo Fernández Goycoolea & Gabriela Zapata-Lancaster & Christopher Whitman, 2022. "Operational Emissions in Prosuming Dwellings: A Study Comparing Different Sources of Grid CO 2 Intensity Values in South Wales, UK," Energies, MDPI, vol. 15(7), pages 1-24, March.
    13. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    14. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    15. Riccardo Fraboni & Gianluca Grazieschi & Simon Pezzutto & Benjamin Mitterrutzner & Eric Wilczynski, 2023. "Environmental Assessment of Residential Space Heating and Cooling Technologies in Europe: A Review of 11 European Member States," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    16. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    17. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    18. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Optimum Size Selection of CHP Retrofitting in Existing UK Hotel Building," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    19. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    20. Marco Scherz & Antonija Ana Wieser & Alexander Passer & Helmuth Kreiner, 2022. "Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review," Sustainability, MDPI, vol. 14(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.