IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4265-d255451.html
   My bibliography  Save this article

Impact of Low-E Window Films on Energy Consumption and CO 2 Emissions of an Existing UK Hotel Building

Author

Listed:
  • Shiva Amirkhani

    (Department of Civil Engineering and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Ali Bahadori-Jahromi

    (Department of Civil Engineering and Built Environment, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Anastasia Mylona

    (Research Department, The Chartered Institution of Building Services Engineers [CIBSE], London SW12 9BS, UK)

  • Paulina Godfrey

    (Energy and Environment, Engineering Operations EMEA, Hilton, Maple Court, Reeds Crescent, Watford WD24 4QQ, UK)

  • Darren Cook

    (Engineering Operations EMEA, Hilton, Maple Court, Reeds Crescent, Watford WD24 4QQ, UK)

Abstract

In order to fulfil the UK government’s ambitious goal of 80% reductions in greenhouse gas emissions by 2050 compared to the levels of 1990s, unprecedented measures for improving the energy efficiency of buildings are needed. This study investigates the impact of a specific type of Low-emissivity (Low-E) window film—Thinsulate Climate Control 75—on the holistic energy consumption of an existing United Kingdom (UK) hotel building. Building modelling and energy simulation software EDSL TAS is used to conduct the study. The result of the simulations demonstrates that by applying Thinsulate films, savings in heating, cooling, and total energy consumptions are achieved by 3%, 20%, and 2.7%, respectively. Also 4.1% and 5.1% savings are achieved in annual CO 2 emissions and total energy costs, respectively, while the initial costs may be an issue. This study found that application of Low-E window films results in slightly better energy performance of the hotel regarding its heating-dominant climate. The study also recommends using average annual actual energy consumption data for a time range, instead of picking a single year’s data for validating purposes.

Suggested Citation

  • Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2019. "Impact of Low-E Window Films on Energy Consumption and CO 2 Emissions of an Existing UK Hotel Building," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4265-:d:255451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    2. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    3. Ye, Hong & Meng, Xianchun & Long, Linshuang & Xu, Bin, 2013. "The route to a perfect window," Renewable Energy, Elsevier, vol. 55(C), pages 448-455.
    4. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    5. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    6. Ali Bahadori-Jahromi & Abdulazeez Rotimi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    7. Ralegaonkar, Rahul V. & Gupta, Rajiv, 2010. "Review of intelligent building construction: A passive solar architecture approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2238-2242, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Wang & Qi Tian & Jie Jia, 2021. "Numerical Study on Performance Optimization of an Energy-Saving Insulated Window," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    2. Shouib Mabdeh & Hikmat Ali & Magd Al-Momani, 2022. "Life Cycle Assessment of Energy Retrofit Measures in Existing Healthcare Facility Buildings: The case of Developing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 418-431, November.
    3. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2020. "Impact of Adding Comfort Cooling Systems on the Energy Consumption and EPC Rating of an Existing UK Hotel," Sustainability, MDPI, vol. 12(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    3. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    4. Hoon Lee, Jae & Jeong, Jinhwa & Tae Chae, Young, 2020. "Optimal control parameter for electrochromic glazing operation in commercial buildings under different climatic conditions," Applied Energy, Elsevier, vol. 260(C).
    5. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    7. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Jiang, Tengyao & Zhao, Xinpeng & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2021. "Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency," Applied Energy, Elsevier, vol. 287(C).
    9. Hardi K. Abdullah & Halil Z. Alibaba, 2020. "Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO 2 and Thermal Comfort Performance," Sustainability, MDPI, vol. 12(2), pages 1-33, January.
    10. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook & Hooman Tahayori & Hexin Zhang, 2021. "Uncertainties in Non-Domestic Energy Performance Certificate Generating in the UK," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    11. Abraham Nathan Zoure & Paolo Vincenzo Genovese, 2022. "Development of Bioclimatic Passive Designs for Office Building in Burkina Faso," Sustainability, MDPI, vol. 14(7), pages 1-23, April.
    12. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    13. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    14. Pacheco-Torgal, F., 2017. "High tech startup creation for energy efficient built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 618-629.
    15. Saman Abolghasemi Moghaddam & Magnus Mattsson & Arman Ameen & Jan Akander & Manuel Gameiro Da Silva & Nuno Simões, 2021. "Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate," Energies, MDPI, vol. 14(22), pages 1-28, November.
    16. Punita Sangwan & Hooman Mehdizadeh-Rad & Anne Wai Man Ng & Muhammad Atiq Ur Rehman Tariq & Raphael Chukwuka Nnachi, 2022. "Performance Evaluation of Phase Change Materials to Reduce the Cooling Load of Buildings in a Tropical Climate," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    17. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    18. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    19. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    20. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4265-:d:255451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.