IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5546-d274401.html
   My bibliography  Save this article

New Building Cladding System Using Independent Tilted BIPV Panels with Battery Storage Capability

Author

Listed:
  • Amy A. Kim

    (Department of Civil and Environmental Engineering, University of Washington, Campus Box 352700, Seattle, WA 98195, USA)

  • Dorothy A. Reed

    (Department of Civil and Environmental Engineering, University of Washington, Campus Box 352700, Seattle, WA 98195, USA)

  • Youngjun Choe

    (Department of Industrial and Systems Engineering, University of Washington, Campus Box 352650, Seattle, WA 98195, USA)

  • Shuoqi Wang

    (Department of Civil and Environmental Engineering, University of Washington, Campus Box 352700, Seattle, WA 98195, USA)

  • Carolina Recart

    (Department of Civil and Environmental Engineering, University of Washington, Campus Box 352700, Seattle, WA 98195, USA)

Abstract

In order to meet renewable energy goals in the near future, the deployment of photovoltaic (PV) panels on buildings will dramatically increase. The objective of this paper is to introduce an improved design for PV cladding systems that will greatly contribute to meeting these renewable energy goals. Typically, building-integrated photovoltaic (BIPV) panels are vertically oriented as cladding and they are not coupled with individual storage batteries. The proposed cladding couples a tilted BIPV panel with one or more storage batteries at each building placement. Thus, the tilted BIPV plus battery system is independent of other power generation in the building and it is referred to as a “building perma-power link” (BPPL) cladding element. Each cladding panel is designed as a stand-alone system, which will be useful for installation, operation, and maintenance. The hyper-redundancy of multiple BPPL cladding panels for a typical building significantly enhances its overall energy resiliency. In order to foster manufacturing ease, each individual cladding unit has been designed at tilts of 45° and 60°. An example of a mid-rise building in Seattle, Washington is provided. The degree of building energy resiliency provided through multiple BPPLs is examined.

Suggested Citation

  • Amy A. Kim & Dorothy A. Reed & Youngjun Choe & Shuoqi Wang & Carolina Recart, 2019. "New Building Cladding System Using Independent Tilted BIPV Panels with Battery Storage Capability," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5546-:d:274401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    2. Morcos, V.H., 1994. "Optimum tilt angle and orientation for solar collectors in Assiut, Egypt," Renewable Energy, Elsevier, vol. 4(3), pages 291-298.
    3. Thorsten Schuetze & Wolfgang Willkomm & Maria Roos, 2015. "Development of a Holistic Evaluation System for BIPV Façades," Energies, MDPI, vol. 8(6), pages 1-18, June.
    4. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    5. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    6. Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
    7. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Rebecca & Zang, Yukun & Yang, Jiaqi & Wakefield, Ron & Nguyen, Kate & Shi, Long & Trigunarsyah, Bambang & Parolini, Fabio & Bonomo, Pierluigi & Frontini, Francesco & Qi, Dahai & Ko, Yoon & Deng,, 2023. "Fire safety requirements for building integrated photovoltaics (BIPV): A cross-country comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Fernando del Ama Gonzalo & Belen Moreno Santamaria & José Antonio Ferrándiz Gea & Matthew Griffin & Juan A. Hernandez Ramos, 2021. "Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing," Energies, MDPI, vol. 14(11), pages 1-20, June.
    3. Xue Mi & Chao Chen & Haoqi Fu & Gongcheng Li & Yongxiang Jiao & Fengtao Han, 2023. "Experimental Study on Heat Storage/Release Performances of Composite Phase Change Thermal Storage Heating Wallboards Based on Photovoltaic Electric-Thermal Systems," Energies, MDPI, vol. 16(6), pages 1-17, March.
    4. Dominika Knera & Pablo Roberto Dellicompagni & Dariusz Heim, 2021. "Improvement of BIPV Efficiency by Application of Highly Reflective Surfaces at the Building Envelope," Energies, MDPI, vol. 14(21), pages 1-17, November.
    5. Haitham Esam Rababah & Azhar Ghazali & Mohd Hafizal Mohd Isa, 2021. "Building Integrated Photovoltaic (BIPV) in Southeast Asian Countries: Review of Effects and Challenges," Sustainability, MDPI, vol. 13(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    2. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    3. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    4. Tripathy, M. & Sadhu, P.K. & Panda, S.K., 2016. "A critical review on building integrated photovoltaic products and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 451-465.
    5. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    6. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    7. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    8. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    9. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    10. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    11. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    12. Essa Alhamer & Addison Grigsby & Rydge Mulford, 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States," Energies, MDPI, vol. 15(20), pages 1-14, October.
    13. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    14. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    15. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    16. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    17. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    19. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    20. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5546-:d:274401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.