IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5439-d272514.html
   My bibliography  Save this article

Study on Clustering of Free-Floating Bike-Sharing Parking Time Series in Beijing Subway Stations

Author

Listed:
  • Dandan Xu

    (Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Yang Bian

    (Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Jian Rong

    (Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Jiachuan Wang

    (Beijing Transportation Information Center, Beijing 100073, China)

  • Baocai Yin

    (Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

Abstract

In recent years, the free-floating bike-sharing (FFBS) system has become a significant mode of travel to satisfy urban residents’ travel demands. However, with the rapid development of FFBS, many problems have arisen, among which the parking problem is the most prominent. To solve the FFBS parking problem around urban subways, firstly, the time series of FFBS parking pattern and subway station classification in Beijing were constructed based on parking intensity, showing a significant spatial distribution of subway stations with different intensity levels. Second, a hierarchical clustering method based on dynamic time warping (DTW) was proposed to cluster the FFBS parking time series. Subway stations in Beijing were grouped into 11 clusters, and the clustering purity reached 0.939, which achieved the expected effect. Then, the peak and off-peak period features of time series were extracted to discuss the clustering results. Finally, a two-level early-warning index for monitoring FFBS was constructed, which took the real-time parking quantity and land use capacity of FFBS into consideration. And FFBS parking management strategies for different early-warning indices were put forward. It is very important for the sustainable development of FFBS and cities.

Suggested Citation

  • Dandan Xu & Yang Bian & Jian Rong & Jiachuan Wang & Baocai Yin, 2019. "Study on Clustering of Free-Floating Bike-Sharing Parking Time Series in Beijing Subway Stations," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5439-:d:272514
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qianling Jiang & Sheng-Jung Ou & Wei Wei, 2019. "Why Shared Bikes of Free-Floating Systems Were Parked Out of Order? A Preliminary Study based on Factor Analysis," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    2. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    3. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    4. Katarina Košmelj & Vladimir Batagelj, 1990. "Cross-sectional approach for clustering time varying data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 99-109, March.
    5. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    6. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    7. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    8. Xing, Yan & Handy, Susan L. & Mokhtarian, Patricia L., 2010. "Factors Associated with Proportions and Miles of Bicycling for Transportation and Recreation in Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt74n4j1p0, Institute of Transportation Studies, UC Davis.
    9. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    10. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    11. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    12. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romm, Daniel & Verma, Priyanka & Karpinski, Elizabeth & Sanders, Tracy L & McKenzie, Grant, 2022. "Differences in first-mile and last-mile behaviour in candidate multi-modal Boston bike-share micromobility trips," Journal of Transport Geography, Elsevier, vol. 102(C).
    2. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    3. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    4. Dandan Xu & Xiaodong Zhang & Xinghua Zhang & Yongguang Yu, 2022. "Type Identification of Land Use in Metro Station Area Based on Spatial–Temporal Features Extraction of Human Activities," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    5. Zhan Gao & Sheng Wei & Lei Wang & Sijia Fan, 2020. "Exploring the Spatial-Temporal Characteristics of Traditional Public Bicycle Use in Yancheng, China: A Perspective of Time Series Cluster of Stations," Sustainability, MDPI, vol. 12(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Politis & Ioannis Fyrogenis & Efthymis Papadopoulos & Anastasia Nikolaidou & Eleni Verani, 2020. "Shifting to Shared Wheels: Factors Affecting Dockless Bike-Sharing Choice for Short and Long Trips," Sustainability, MDPI, vol. 12(19), pages 1-25, October.
    2. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    3. Raux, Charles & Zoubir, Ayman & Geyik, Mirkan, 2017. "Who are bike sharing schemes members and do they travel differently? The case of Lyon’s “Velo’v” scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 350-363.
    4. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    5. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    6. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.
    7. Audikana, Ander & Ravalet, Emmanuel & Baranger, Virginie & Kaufmann, Vincent, 2017. "Implementing bikesharing systems in small cities: Evidence from the Swiss experience," Transport Policy, Elsevier, vol. 55(C), pages 18-28.
    8. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    9. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    10. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    11. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    12. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    13. Elżbieta Szymańska & Eugenia Panfiluk & Halina Kiryluk, 2021. "Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Białowieża Forest Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    14. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    15. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    16. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    17. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    18. Shang, Wen-Long & Chen, Jinyu & Bi, Huibo & Sui, Yi & Chen, Yanyan & Yu, Haitao, 2021. "Impacts of COVID-19 pandemic on user behaviors and environmental benefits of bike sharing: A big-data analysis," Applied Energy, Elsevier, vol. 285(C).
    19. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    20. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5439-:d:272514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.