IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5243-d270395.html
   My bibliography  Save this article

Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches

Author

Listed:
  • Renata Duffková

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5-Zbraslav, Czech Republic)

  • Jiří Holub

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5-Zbraslav, Czech Republic)

  • Petr Fučík

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5-Zbraslav, Czech Republic)

  • Jaroslav Rožnovský

    (Czech Hydrometeorological Institute, Branch office Brno, Kroftova 2578/43, 616 67 Brno-Žabovřesky, Czech Republic)

  • Ivan Novotný

    (Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27 Praha 5-Zbraslav, Czech Republic)

Abstract

Long-term water balance (WB) of four selected crops (winter wheat, oilseed rape, silage maize, semi-early potatoes) was determined at the field block scale in the Czech Republic for all agricultural growing areas (AGAs): maize-, beet-, potato- and mountain-AGAs for the 1981–2010 period. A novel approach for the calculation of WB was employed, which combined the FAO-56 method for crop water requirements (CWRs) with sources of available water from precipitation, soil, and groundwater. The computed WB was divided into four categories of soil water availability based on soil hydrolimits and crop features: Categories 1 and 2 with zero or mild occurrence of crop water stress; categories 3 and 4 with intermediate and severe occurrence of crop water stress. The winter crops were affected by water stress to a lesser extent (the area of categories 3 and 4: wheat 20.1%, oilseed rape 14.5%) as compared with spring crops (the area of categories 3 and 4: maize 39.6%, potatoes 41%). The highest water deficit was recorded for all crops in the maize-AGA due to low precipitation and high CWRs. Most available water was revealed to occur in the mountain-AGA. A strong need for the adoption of measures towards the optimization of water regimes on agricultural land was indicated. The present study shows a promising approach for evaluating and proposing changes of area of cultivated crops with the appropriate tillage and agricultural water management in terms of satisfactory crop water requirements.

Suggested Citation

  • Renata Duffková & Jiří Holub & Petr Fučík & Jaroslav Rožnovský & Ivan Novotný, 2019. "Long-Term Water Balance of Selected Field Crops in Different Agricultural Regions of the Czech Republic Using Fao-56 and Soil Hydrological Approaches," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5243-:d:270395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    2. George P. Petropoulos & Prashant K. Srivastava & Maria Piles & Simon Pearson, 2018. "Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    3. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    4. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandra Król-Badziak & Jerzy Kozyra & Stelios Rozakis, 2024. "Assessment of Suitability Area for Maize Production in Poland Related to the Climate Change and Water Stress," Sustainability, MDPI, vol. 16(2), pages 1-19, January.
    2. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Youngseok Song & Moojong Park, 2021. "A Study on the Development of Reduction Facilities’ Management Standards for Agricultural Drainage for Disaster Reduction," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    3. Jose Oteros & Herminia García-Mozo & Roser Botey & Antonio Mestre & Carmen Galán, 2015. "Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012)," Climatic Change, Springer, vol. 130(4), pages 545-558, June.
    4. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    5. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    6. Milica Kanjevac & Biljana Bojović & Andrija Ćirić & Milan Stanković & Dragana Jakovljević, 2022. "Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    7. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Andersen, Lykke E. & Breisinger, Clemens & Jemio, Luis Carlos & Mason-D’Croz, Daniel & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2016. "Climate change impacts and household resilience: Prospects for 2050 in Brazil, Mexico, and Peru," Food policy reports 978-0-89629-581-0, International Food Policy Research Institute (IFPRI).
    9. Sonia Quiroga & Cristina Suárez & Juan Diego Solís & Pablo Martínez-Juárez, 2017. "A microeconometric analysis of climate change drivers for coffee crops transition to cacao in Mesoamerican countries," Proceedings of Economics and Finance Conferences 4507415, International Institute of Social and Economic Sciences.
    10. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    11. Mariusz Adynkiewicz-Piragas & Bartłomiej Miszuk, 2020. "Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    12. Wittwer, Raphaël A. & Klaus, Valentin H. & Miranda Oliveira, Emily & Sun, Qing & Liu, Yujie & Gilgen, Anna K. & Buchmann, Nina & van der Heijden, Marcel G.A., 2023. "Limited capability of organic farming and conservation tillage to enhance agroecosystem resilience to severe drought," Agricultural Systems, Elsevier, vol. 211(C).
    13. Oludare Sunday Durodola & Khaldoon A. Mourad, 2020. "Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    14. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    15. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    16. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    17. Robert Finger & Nadja El Benni, 2021. "Farm income in European agriculture: new perspectives on measurement and implications for policy evaluation," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(2), pages 253-265.
    18. Grusson, Youen & Wesström, Ingrid & Joel, Abraham, 2021. "Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need," Agricultural Water Management, Elsevier, vol. 251(C).
    19. Alina Maciejewska & Łukasz Kuzak & Marianna Ulanicka-Raczyńska & Kamil Moreau, 2022. "Land Management Using Land Reserves to Alleviate Emergencies on the Example of Warsaw," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    20. Sławomir Bajkowski & Janusz Urbański & Ryszard Oleszczuk & Piotr Siwicki & Andrzej Brandyk & Zbigniew Popek, 2022. "Modular Regulators of Water Level in Ditches of Subirrigation Systems," Sustainability, MDPI, vol. 14(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5243-:d:270395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.