IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p593-d454535.html
   My bibliography  Save this article

Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria

Author

Listed:
  • Oludare Sunday Durodola

    (Pan African University Institute of Water and Energy Sciences, Abou Bekr Belkaid University of Tlemcen B.P. 119, Tlemcen 13000, Algeria
    Land and Water Division, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy)

  • Khaldoon A. Mourad

    (The Centre for Sustainable Visions and Lund University, 201, SE-22100 Lund, Sweden)

Abstract

African countries such as Nigeria are anticipated to be more susceptible to the impacts of climate change due to reliance on rainfed agriculture. In this regard, the impacts of climate change on crop water requirements (CWR), yields and crop water productivity (CWP) of soybean in the Ogun-Ona River Basin, Nigeria, were evaluated for the baseline period (1986–2015) and future period (2021–2099) under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios using AquaCrop Version 6.1. Future climate projections from the Swedish Meteorological and Hydrological Institute’s climate models (HadGEM2-ES and RCA4) were used in simulating the future scenarios. The results show that for the baseline period, CWR and yield are increasing while CWP shows a slight increase. For the future period, the CWR is projected to fluctuate and depend on the rainfall pattern. Meanwhile, carbon dioxide fertilization has positive effects on yield and is projected to increase up to 40% under RCP 8.5. The results of this study certainly offer useful information on suitable adaption measures which could be implemented by stakeholders and policymakers to improve soybean productivity in Nigeria.

Suggested Citation

  • Oludare Sunday Durodola & Khaldoon A. Mourad, 2020. "Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:593-:d:454535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    2. Munang Tingem & Mike Rivington, 2009. "Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(2), pages 153-168, February.
    3. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    6. Olayide, Olawale Emmanuel & Tetteh, Isaac Kow & Popoola, Labode, 2016. "Differential impacts of rainfall and irrigation on agricultural production in Nigeria: Any lessons for climate-smart agriculture?," Agricultural Water Management, Elsevier, vol. 178(C), pages 30-36.
    7. Hany Besada & Karolina Werner, 2015. "An assessment of the effects of Africa's water crisis on food security and management," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(1), pages 120-133, March.
    8. Khaldoon Mourad & Hartmut Gaese & Amer Jabarin, 2010. "Economic Value of Tree Fruit Production in Jordan Valley from a Virtual Water Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2021-2034, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    2. Mompremier, R. & Her, Y. & Hoogenboom, G. & Migliaccio, K. & Muñoz-Carpena, R. & Brym, Z. & Colbert, R.W. & Jeune, W., 2021. "Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Dominik Paprotny, 2021. "Convergence Between Developed and Developing Countries: A Centennial Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 193-225, January.
    4. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Azam Lashkari & Amin Alizadeh & Ehsan Rezaei & Mohammad Bannayan, 2012. "Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 1-16, January.
    6. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    8. Gozgor, Giray & Paramati, Sudharshan Reddy, 2022. "Does energy diversification cause an economic slowdown? Evidence from a newly constructed energy diversification index," Energy Economics, Elsevier, vol. 109(C).
    9. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.
    10. Sahrish Saeed & Muhammad Sohail Amjad Makhdum & Sofia Anwar & Muhammad Rizwan Yaseen, 2023. "Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries," Sustainability, MDPI, vol. 15(5), pages 1-25, February.
    11. repec:zib:zbseps:v:1:y:2021:i:2:p:72-78 is not listed on IDEAS
    12. Moradeyo Adebanjo OTITOJU & Emeka Solomon FIDELIS & Eunice Ojimaojo OTENE & David Oghenenyerovwo ANIGORO, 2023. "Review of Climate Smart Agricultural Technologies Adoption and Use in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(8), pages 827-838, August.
    13. Oscar Zapata, 2023. "Weather Disasters, Material Losses and Income Inequality: Evidence from a Tropical, Middle-Income Country," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 231-251, July.
    14. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    15. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    16. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    17. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul & Aghili, Nasim, 2013. "The scenario of greenhouse gases reduction in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 400-409.
    18. Valentina Mereu & Gianluca Carboni & Andrea Gallo & Raffaello Cervigni & Donatella Spano, 2015. "Impact of climate change on staple food crop production in Nigeria," Climatic Change, Springer, vol. 132(2), pages 321-336, September.
    19. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    20. Chao Deng & Weiguang Wang, 2019. "Runoff Predicting and Variation Analysis in Upper Ganjiang Basin under Projected Climate Changes," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    21. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:593-:d:454535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.