IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5082-d268048.html
   My bibliography  Save this article

A Bibliometrics Review of Water Footprint Research in China: 2003–2018

Author

Listed:
  • Yongnan Zhu

    (State Key Laboratory of Simulation and Regulation of Water cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Shan Jiang

    (State Key Laboratory of Simulation and Regulation of Water cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Xinxueqi Han

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China)

  • Xuerui Gao

    (Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China)

  • Guohua He

    (State Key Laboratory of Simulation and Regulation of Water cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Yong Zhao

    (State Key Laboratory of Simulation and Regulation of Water cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Haihong Li

    (State Key Laboratory of Simulation and Regulation of Water cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

As water security becomes an increasingly important issue, the analysis of the conflict between water supply and demand has gained significance in China. This paper details a bibliometric review of papers published between 2003 and 2018 on the water footprint in China, one of the global hotspots of water resource research. The tendencies and key points of water footprint research were systematically analyzed based on 1564 articles, comprising 1170 original publications in Chinese from the China National Knowledge Infrastructure database and 394 publications in English from the Web of Science database. The results show that the literature associated with water footprint research has expanded significantly. The number of papers published increased from 104 in 2003–2006 to 735 in 2015–2018. Water footprint research has been applied to agricultural, industrial, and regional water resource management to quantify the impact of human activities on water resources and the environment. Water footprint metrics were extracted for regional comparisons. There are obvious regional characteristics of the water footprint in China, but the uncertainty of results makes further investigation necessary. Further water footprint modeling and field experimental research is needed to explore the water–ecological environment under complex systems.

Suggested Citation

  • Yongnan Zhu & Shan Jiang & Xinxueqi Han & Xuerui Gao & Guohua He & Yong Zhao & Haihong Li, 2019. "A Bibliometrics Review of Water Footprint Research in China: 2003–2018," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5082-:d:268048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    2. Gu, Qiwei & Wang, Hongqi & Zheng, Yinan & Zhu, Jingwen & Li, Xiaoke, 2015. "Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River," Ecological Modelling, Elsevier, vol. 318(C), pages 86-99.
    3. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    4. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    5. William W. Hood & Concepción S. Wilson, 2001. "The Literature of Bibliometrics, Scientometrics, and Informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 52(2), pages 291-314, October.
    6. Willa Paterson & Richard Rushforth & Benjamin L. Ruddell & Megan Konar & Ikechukwu C. Ahams & Jorge Gironás & Ana Mijic & Alfonso Mejia, 2015. "Water Footprint of Cities: A Review and Suggestions for Future Research," Sustainability, MDPI, vol. 7(7), pages 1-30, June.
    7. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    8. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    9. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Áron Szennay & Cecília Szigeti & Judit Beke & László Radácsi, 2021. "Ecological Footprint as an Indicator of Corporate Environmental Performance—Empirical Evidence from Hungarian SMEs," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    2. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    3. Raghu Raman & Ricardo Vinuesa & Prema Nedungadi, 2021. "Bibliometric Analysis of SARS, MERS, and COVID-19 Studies from India and Connection to Sustainable Development Goals," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    4. Jiyu Zhao & Ning Zhang, 2023. "Environmental regulation and labor market: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6095-6116, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    2. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    3. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    4. Ruth Zárate-Rueda & Yolima Ivonne Beltrán-Villamizar & Daniella Murallas-Sánchez, 2021. "Social representations of socioenvironmental dynamics in extractive ecosystems and conservation practices with sustainable development: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16428-16453, November.
    5. Kameliya Deyanova & Nataliia Brehmer & Artur Lapidus & Victor Tiberius & Steve Walsh, 2022. "Hatching start-ups for sustainable growth: a bibliometric review on business incubators," Review of Managerial Science, Springer, vol. 16(7), pages 2083-2109, October.
    6. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    7. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    8. José Álvarez-García & Amador Durán-Sánchez & Néstor Montalván-Burbano & María de la Cruz del Río-Rama, 2023. "Spanish Journal of Finance and Accounting (SJFA): Mapping of Knowledge over the Last 25 Years," Publications, MDPI, vol. 11(1), pages 1-19, February.
    9. Chu, Junying & Wang, Jianhua & Wang, Can, 2015. "A structure–efficiency based performance evaluation of the urban water cycle in northern China and its policy implications," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 1-11.
    10. Fatemeh Karandish & Samira Salari & Abdullah Darzi-Naftchali, 2015. "Application of Virtual Water Trade to Evaluate Cropping Pattern in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4061-4074, September.
    11. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    12. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    13. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(2), April.
    14. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    15. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
    16. Han, M.Y. & Chen, G.Q. & Mustafa, M.T. & Hayat, T. & Shao, Ling & Li, J.S. & Xia, X.H. & Ji, Xi, 2015. "Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010," Ecological Modelling, Elsevier, vol. 318(C), pages 19-25.
    17. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    18. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    19. Arjen Y. Hoekstra & Ashok K. Chapagain & Guoping Zhang, 2015. "Water Footprints and Sustainable Water Allocation," Sustainability, MDPI, vol. 8(1), pages 1-6, December.
    20. Heather Keathley-Herring & Eileen Van Aken & Fernando Gonzalez-Aleu & Fernando Deschamps & Geert Letens & Pablo Cardenas Orlandini, 2016. "Assessing the maturity of a research area: bibliometric review and proposed framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 927-951, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5082-:d:268048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.