IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3824-d247947.html
   My bibliography  Save this article

Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis

Author

Listed:
  • Mariangela Diacono

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—Research Centre for Agriculture and Environment, Via Celso Ulpiani 5, 70125 Bari, Italy)

  • Alessandro Persiani

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—Research Centre for Agriculture and Environment, Via Celso Ulpiani 5, 70125 Bari, Italy)

  • Elena Testani

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—Research Centre for Agriculture and Environment, Via della Navicella 2-4, 00184 Roma (RM), Italy)

  • Francesco Montemurro

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto (AP), Italy)

  • Corrado Ciaccia

    (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria—Research Centre for Agriculture and Environment, Via della Navicella 2-4, 00184 Roma (RM), Italy)

Abstract

The Circular Economy concept implies the re-design of existing production systems in agriculture, by promoting agricultural waste recycling. In an organic zucchini—lettuce rotation, two different agroecological tools were considered: biofertilizer and presence or absence of green manure (GM+ and GM−). In particular, we compared: (i) anaerobic digestate from cattle manure, co-composted with vegetable wastes, with the presence of GM (AD GM+); (ii) olive pomace compost, re-composted, with the presence of GM (OWC GM+); (iii) municipal waste compost with GM (MWC GM+); (iv) municipal waste compost without GM (MWC GM−). These materials were tested with a commercial organic fertilizer without GM (COF GM−) as a positive control. The objectives were: (i) assessing the environmental sustainability of biofertilizers through carbon footprint analysis by greenhouse gas—GHG—emissions; (ii) evaluating the agronomic performance on the vegetable rotation, by energy output assessment. The total carbon emissions of biofertilizers production was 63.9 and 67.0 kg of CO 2 eq Mg −1 for AD and OWC, respectively. The co-composting and re-composting processes emitted 31.4 and 8.4 kg CO 2 per Mg of compost, respectively. In AD the ventilation phase of composting accounted for 37.2% of total emissions. The total CO 2 emission values for the two-crop cycles were the highest in COF GM− and the lowest in OWC GM+, due to different fertilizer sources. On the average of the treatments, the input that induced the highest CO 2 emission was irrigation (37.9%). The energy output assessment for zucchini and lettuce highlighted similar performance for all the treatments. Our findings demonstrated the validity of the tested processes to recycle agro-industrial wastes, and the potential of agroecological practices (GM) to mitigate GHG emissions.

Suggested Citation

  • Mariangela Diacono & Alessandro Persiani & Elena Testani & Francesco Montemurro & Corrado Ciaccia, 2019. "Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3824-:d:247947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niccolò Pampuro & Federica Caffaro & Eugenio Cavallo, 2018. "Reuse of Animal Manure: A Case Study on Stakeholders’ Perceptions about Pelletized Compost in Northwestern Italy," Sustainability, MDPI, vol. 10(6), pages 1-10, June.
    2. Eleni Kasapidou & Evangelia Sossidou & Paraskevi Mitlianga, 2015. "Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality," Agriculture, MDPI, vol. 5(4), pages 1-15, October.
    3. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    4. Niccolò Pampuro & Patrizia Busato & Eugenio Cavallo, 2018. "Gaseous Emissions after Soil Application of Pellet Made from Composted Pig Slurry Solid Fraction: Effect of Application Method and Pellet Diameter," Agriculture, MDPI, vol. 8(8), pages 1-11, August.
    5. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Slámová & Alexandra Kruse & Ingrid Belčáková & Johannes Dreer, 2021. "Old but Not Old Fashioned: Agricultural Landscapes as European Heritage and Basis for Sustainable Multifunctional Farming to Earn a Living," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    2. Hye-Mi Park & Hyun-Kil Jo & Jin-Young Kim, 2021. "Carbon Footprint of Landscape Tree Production in Korea," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    3. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    4. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    5. Debora Puglia & Daniela Pezzolla & Giovanni Gigliotti & Luigi Torre & Maria Luce Bartucca & Daniele Del Buono, 2021. "The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    6. Finbarr G. Horgan & Dylan Floyd & Enrique A. Mundaca & Eduardo Crisol-Martínez, 2023. "Spent Coffee Grounds Applied as a Top-Dressing or Incorporated into the Soil Can Improve Plant Growth While Reducing Slug Herbivory," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    7. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    8. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Radu Lucian Pânzaru & Daniela Firoiu & George H. Ionescu & Andi Ciobanu & Dragoș Mihai Medelete & Ramona Pîrvu, 2023. "Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries," Sustainability, MDPI, vol. 15(13), pages 1-31, July.
    10. Le Tran Thanh Liem & Yukihiro Tashiro & Pham Van Trong Tinh & Kenji Sakai, 2022. "Reduction in Greenhouse Gas Emission from Seedless Lime Cultivation Using Organic Fertilizer in a Province in Vietnam Mekong Delta Region," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    11. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    12. Nasser Al-Suhaibani & Mostafa Selim & Ali Alderfasi & Salah El-Hendawy, 2021. "Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    13. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    14. Corrado Ciaccia & Elena Testani & Angelo Fiore & Ileana Iocola & Marta Di Pierro & Giuseppe Mele & Filippo Ferlito & Marcello Cutuli & Francesco Montemurro & Roberta Farina & Danilo Ceccarelli & Aless, 2021. "Organic Agroforestry Long-Term Field Experiment Designing Trough Actors’ Knowledge towards Food System Sustainability," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    15. Rebeka Pajura & Adam Masłoń & Joanna Czarnota, 2023. "The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland," Energies, MDPI, vol. 16(4), pages 1-24, February.
    16. Amir Latif & Martha Fani Cahyandito & Gemilang Lara Utama, 2023. "Dynamic System Modeling and Sustainability Strategies for Circular Economy-Based Dairy Cow Waste Management," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    17. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability,, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    2. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    3. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    4. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    5. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    6. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    7. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    8. Justinas Anušauskas & Andrius Grigas & Kristina Lekavičienė & Ernestas Zaleckas & Simona Paulikienė & Dainius Steponavičius, 2024. "Energy and Environmental Assessment of Bacteria-Inoculated Mineral Fertilizer Used in Spring Barley Cultivation Technologies," Agriculture, MDPI, vol. 14(4), pages 1-22, April.
    9. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    10. Zaman, Khalid & Khan, Muhammad Mushtaq & Ahmad, Mehboob & Rustam, Rabiah, 2012. "The relationship between agricultural technology and energy demand in Pakistan," Energy Policy, Elsevier, vol. 44(C), pages 268-279.
    11. Nan Li & Hailin Mu & Huanan Li & Shusen Gui, 2012. "Diesel Consumption of Agriculture in China," Energies, MDPI, vol. 5(12), pages 1-24, December.
    12. Jekayinfa, S.O. & Bamgboye, A.I., 2006. "Estimating energy requirement in cashew (Anacardium occidentale L.) nut processing operations," Energy, Elsevier, vol. 31(8), pages 1305-1320.
    13. Ali Mostafaeipour & Mohammad Bagher Fakhrzad & Sajad Gharaat & Mehdi Jahangiri & Joshuva Arockia Dhanraj & Shahab S. Band & Alibek Issakhov & Amir Mosavi, 2020. "Machine Learning for Prediction of Energy in Wheat Production," Agriculture, MDPI, vol. 10(11), pages 1-19, October.
    14. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    15. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    16. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    17. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    18. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    19. Georgios Gaidajis & Ilias Kakanis, 2020. "Life Cycle Assessment of Nitrate and Compound Fertilizers Production—A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    20. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3824-:d:247947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.