IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2965-d234022.html
   My bibliography  Save this article

The Role of Large Dams in Promoting Economic Development under the Pressure of Population Growth

Author

Listed:
  • Haiyun Shi

    (State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

  • Ji Chen

    (Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China)

  • Suning Liu

    (State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
    Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China)

  • Bellie Sivakumar

    (UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    Department of Civil Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)

Abstract

The close relationship between large dams and social development (i.e., water, food, and energy consumption) has been revealed in previous studies, and the vital role of large dams in sustaining societies has been recognized. With population projections indicating continued growth during this century, it is expected that further economic development of society, e.g., Gross Domestic Product (GDP) growth, will be greatly affected by possible challenges, such as water, food, and energy shortages in the future, especially if proper planning, development, and management strategies are not adopted. In our previous study, we have argued that construction of additional large dams will be considered as one of the best available options to meet future increases in water, food, and energy demands, which are all crucial to sustain economic development. In the present study, firstly, we will emphasize the vital role of dams in promoting economic growth through analyzing the relationship between large dam development and GDP growth at both global and national scales. Secondly, based on the projection results of future large dam development, we will preliminarily predict the future economic development represented by GDP. The results show that the impacts of large dams upon GDP are more significant in countries with higher levels of socioeconomic development, which generally supports large dams as the vital factor to promote economic development.

Suggested Citation

  • Haiyun Shi & Ji Chen & Suning Liu & Bellie Sivakumar, 2019. "The Role of Large Dams in Promoting Economic Development under the Pressure of Population Growth," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2965-:d:234022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ji & Shi, Haiyun & Sivakumar, Bellie & Peart, Mervyn R., 2016. "Population, water, food, energy and dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 18-28.
    2. Wu, Yiping & Chen, Ji, 2013. "Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang reservoir in southern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 110-121.
    3. Frauke Urban & Giuseppina Siciliano & Johan Nordensvard, 2018. "China’s dam-builders: their role in transboundary river management in South-East Asia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(5), pages 747-770, September.
    4. Sun, Jian & Dang, Zhiliang & Zheng, Shaokui, 2017. "Development of payment standards for ecosystem services in the largest interbasin water transfer projects in the world," Agricultural Water Management, Elsevier, vol. 182(C), pages 158-164.
    5. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    6. Youliang Huang & Wensheng Lin & Shan Li & Yan Ning, 2018. "Social Impacts of Dam-Induced Displacement and Resettlement: A Comparative Case Study in China," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Hafedh Hamza & Afnan Mohammed Saegh, 2023. "Flash Flood Risk Assessment Due to a Possible Dam Break in Urban Arid Environment, the New Um Al-Khair Dam Case Study, Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    2. Zida Song & Quan Liu & Zhigen Hu, 2020. "Decision-Making Framework, Enhanced by Mutual Inspection for First-Stage Dam Construction Diversion Scheme Selection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 563-577, January.
    3. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    4. Eriyagama, Nishadi & Smakhtin, V. & Udamulla, L., 2021. "Sustainable surface water storage development pathways and acceptable limits for river basins," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(5):645.
    5. Fida Hussain & Shakeel Ahmed & Syed Muhammad Zaigham Abbas Naqvi & Muhammad Awais & Yanyan Zhang & Hao Zhang & Vijaya Raghavan & Yiheng Zang & Guoqing Zhao & Jiandong Hu, 2025. "Agricultural Non-Point Source Pollution: Comprehensive Analysis of Sources and Assessment Methods," Agriculture, MDPI, vol. 15(5), pages 1-35, February.
    6. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    7. Hongzhang Xu & Jamie Pittock & Katherine A. Daniell, 2021. "China: A New Trajectory Prioritizing Rural Rather Than Urban Development?," Land, MDPI, vol. 10(5), pages 1-29, May.
    8. Danuta Piróg & Joanna Fidelus-Orzechowska & Łukasz Wiejaczka, 2022. "Local Authority vs Community Visions of Dam Project Land Development: a Text Mining Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1833-1848, April.
    9. Emon Kalyan Chowdhury & Bablu Kumar Dhar & Md.Abu Issa Gazi, 2023. "Impact of Remittance on Economic Progress: Evidence from Low-Income Asian Frontier Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(1), pages 382-407, March.
    10. Sofia Sarchani & Aristeidis G. Koutroulis, 2022. "Probabilistic dam breach flood modeling: the case of Valsamiotis dam in Crete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1763-1814, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ji & Shi, Haiyun & Sivakumar, Bellie & Peart, Mervyn R., 2016. "Population, water, food, energy and dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 18-28.
    2. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    3. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    4. Priyanka Mallick, 2022. "Transboundary River Cooperation in Mekong Basin: A Sub-regional Perspective," Journal of Asian Security and International Affairs, , vol. 9(1), pages 50-71, April.
    5. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Insights from a Comprehensive Capacity Expansion Planning Modeling on the Operation and Value of Hydropower Plants under High Renewable Penetrations," Energies, MDPI, vol. 17(7), pages 1-29, April.
    6. Jelena Cvijović & Vladimir Obradović & Marija Todorović, 2021. "Stakeholder Management and Project Sustainability—A Throw of the Dice," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    8. Xiaona Li & Xiaosheng Wang & Haiying Guo & Weimin Ma, 2020. "Multi-Water Resources Optimal Allocation Based on Multi-Objective Uncertain Chance-Constrained Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4881-4899, December.
    9. Valero, Daniel & Pummer, Elena & Heller, Valentin & Kramer, Matthias & Bung, Daniel B. & Mulligan, Sean & Erpicum, Sébastien, 2025. "The unspoken value of water infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    10. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 513-530.
    11. Long Ho & Peter Goethals, 2020. "Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 603-631, July.
    12. Nam, Won-Ho & Choi, Jin-Yong, 2014. "Development of an irrigation vulnerability assessment model in agricultural reservoirs utilizing probability theory and reliability analysis," Agricultural Water Management, Elsevier, vol. 142(C), pages 115-126.
    13. Hao Wang & Sander Meijerink & Erwin van der Krabben, 2020. "Institutional Design and Performance of Markets for Watershed Ecosystem Services: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-26, August.
    14. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    15. Giri, Puspendu & Paul, Somnath & Debnath, Bijoy Krishna, 2024. "A fuzzy Graph Theory and Matrix Approach (fuzzy GTMA) to select the best renewable energy alternative in India," Applied Energy, Elsevier, vol. 358(C).
    16. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    17. Vivek Arulnathan & Mohammad Davoud Heidari & Maurice Doyon & Eric P. H. Li & Nathan Pelletier, 2022. "Economic Indicators for Life Cycle Sustainability Assessment: Going beyond Life Cycle Costing," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    18. Jianxia Chang & Yanbin Kan & Yimin Wang & Qiang Huang & Lei Chen, 2017. "Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 995-1012, February.
    19. Oleg Bazaluk & Svitlana Balinchenko, 2020. "Dynamic Coordination of Internal Displacement: Return and Integration Cases in Ukraine and Georgia," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    20. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2965-:d:234022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.